



# Exoplanet Observing with Small Telescopes

Dennis M. Conti Chair, AAVSO Exoplanet Section www.astrodennis.com

# Objectives

- Understand the fundamentals of high precision photometry and how they apply to exoplanet observing
- Learn "best practices" for exoplanet observing
- Be able to conduct an exoplanet observation and analyze the results
- Review what's involved in publishing the results
- Discuss pro/am collaborations and the future of exoplanet observing by amateur astronomers

# The Night Sky

Q: Which stars have one or more planets (exoplanets) around them?

#### A: Most of them!





The Kepler spacecraft has now confirmed that Earth-size planets exist in the habitable zone!

#### **Habitable Zone**

тоо нот

JUST RIGHT

TOO COLD

Planet size: 1-2x Earth

Courtesy: NASA

# What is Driving Us?

- How do planets form?
- How was our solar system formed?

The ultimate goal: detect biomarkers in the atmosphere of planets in the habitable zone

# The Strange World of "Other Worlds"

- Most exoplanets we have discovered are close-in, large planets: "Hot Jupiters"
- Some stars have multiple planets
- Some planets orbit multiple stars
- Some "planets" are free-floating
- Some planets' orbits are opposite from their star's rotation
- Some planetesimals are disintegrating around their host star

# History

- 1917 Carnegie Observatory astronomers (unknowingly) recorded evidence of an exoplanet; not realized until 2016
- 1992 Aleksander Wolszczan and Dan Frail discovered an exoplanet around a pulsar
- 1995 discovery of first exoplanet around a Sun-like star
- 1999 detection of an exoplanet using a robotic telescope

Robotic Telescopes in the 1990s ASP Conference Series, Vol. 34, 1992 Alex V. Filippenko (ed.)

THE USE OF ROBOTIC TELESCOPES FOR DETECTING PLANETARY SYSTEMS

WILLIAM J. BORUCKI NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035

RUSSELL M. GENET Fairborn Observatory, 3435 E. Edgewood Ave., Mesa, AZ 85204



#### By the Numbers (as of 10/21/16)

- 3,397 confirmed exoplanets
- 2,416 unconfirmed candidates
- 297 candidates in the habitable zone

# The Challenge



Courtesy: Keck Observatory

## **Exoplanet Detection Methods**

- Transit Method:
  - the dominant method used by amateur astronomers



Radial Velocity Method



• Microlensing



# **Exoplanet Detection Methods**

- Transit Method:
  - the dominant method used by amateur astronomers



Radial Velocity Method



• Microlensing



- Pulsations of Host Star
- Direct Imaging

# The Light Curve



#### We can learn a lot just from the light curve!

- How big the planet is (its radius)
- How far it is from its host star (the size of its orbit)
- How inclined is its orbit from our line-of-sight
- Whether it is truly a planet or another star

# Detecting Eclipsing Binaries vs. Exoplanets

 An eclipsing binary will most often show different light curve depths with different filters

• The light curve of an eclipsing binary is often much deeper than that of an exoplanet

# Example: Eclipsing Binary Light Curve



© Copyright Dennis M. Conti 2016

### Star/Planet Properties and Relationships

## Notation Conventions

• Star parameters:

 $M_*$  - mass relative to the mass of the Sun ( $M_{sun} = M_{\odot}$ )

- $R_*$  radius relative to the radius of the Sun ( $R_{sun} = R_{\odot}$ )
- $L_*$  luminosity relative to that of the Sun ( $L_{sun} = L_{\odot}$ )
- $T_*$  temperature relative to that of the Sun ( $T_{sun} = T_{\odot}$ )
- Planetary parameters:

 $M_p$  – mass relative to the mass of Jupiter ( $M_{jup}$ )

 $R_p$  - radius relative to the radius of Jupiter ( $R_{jup}$ )

- Transit parameters:
  - $\rm T_{\rm c}\,$  midpoint of a transit
  - F flux
  - P orbital period
  - a semi-major axis (in astronomical units AUs)

#### Hertzbrung-Russell (H-R)Diagram



Actual luminosity L<sub>\*</sub> = a function of temperature (spectral type)

### Star Radius, Luminosity and Temperature

- Radius-Luminosity-Temperature Relationship: Star radius R ∗ = √L∗/T∗<sup>4</sup>, where: L∗= actual luminosity T∗ = temperature
- R \* will later be used to compute exoplanet properties
- Mass-Luminosity Relationship (for main sequence stars):
   Star mass M<sub>\*</sub> = <sup>3.5</sup>√ (L<sub>\*</sub>·M<sub>sun</sub><sup>3.5</sup>/L<sub>sun</sub>)

Exoplanet Properties from Primary Eclipse



- Exoplanet radius:  $R_p = f_1(R_*, \Delta F)$
- Exoplanet orbit :  $a/R_* = f_2(P, \Delta F, t_T, t_F)$
- Exoplanet orbit inclination:  $i = f_3(P, \Delta F, t_T, t_F)$

(see Seager, et al. 2002)

# Fundamentals of High Precision Photometry

#### Point Spread Function (PSF)



2.44\* wavelength/aperture diameter

For an 11" scope at 656 nm = 1.2 arcseconds

© Copyright Dennis M. Conti 2016

# Resolution: Raleigh Criterion



By Spencer Bliven - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=31456019



# Full Width at Half Maximum (FWHM)



• Used as a measure of "seeing"

# **Bandpass Filters**

- Standard photometric filters (preferred for exoplanet work):
  - Johnson-Cousins:



Sloan Digital Sky Survey (SDSS):



"Exoplanet" Filter:(Clear Blue Blocking)



Courtesy: Astrodon

© Copyright Dennis M. Conti 2016

# Quantum Efficiency (QE) of a CCD Detector



By Philippe Bernhard

# It's all about counting photons!



| Pos | 330 | 331  | 332  | 333  | 334   | 335   | 336   | 337   | 338  | 339  | 340  | 341  | 342 |
|-----|-----|------|------|------|-------|-------|-------|-------|------|------|------|------|-----|
| 589 | 386 | 496  | 494  | 695  | 932   | 1170  | 1310  | 1198  | 1121 | 771  | 630  | 455  | 362 |
| 590 | 450 | 622  | 748  | 1052 | 1397  | 1916  | 1961  | 1815  | 1344 | 1069 | 883  | 590  | 466 |
| 591 | 494 | 687  | 936  | 1665 | 2356  | 3118  | 3425  | 2755  | 1967 | 1434 | 978  | 705  | 575 |
| 592 | 626 | 892  | 1461 | 2487 | 4470  | 5530  | 5689  | 4639  | 3051 | 2028 | 1251 | 672  | 610 |
| 593 | 768 | 1164 | 2195 | 4307 | 6910  | 9001  | 10074 | 7753  | 5251 | 2890 | 1713 | 1066 | 625 |
| 594 | 825 | 1538 | 3221 | 6535 | 10583 | 15120 | 15572 | 12125 | 7578 | 3886 | 2273 | 1346 | 748 |
| 595 | 930 | 1760 | 3530 | 7445 | 12876 | 18911 | 19476 | 15213 | 9978 | 5272 | 2919 | 1532 | 913 |
| 596 | 870 | 1521 | 3102 | 6141 | 11995 | 17968 | 18835 | 14734 | 9907 | 5523 | 2828 | 1696 | 958 |
| 597 | 664 | 1194 | 1898 | 4182 | 7531  | 10983 | 11624 | 10406 | 6526 | 3652 | 2275 | 1287 | 958 |
| 598 | 614 | 854  | 1179 | 1837 | 3298  | 4250  | 4765  | 4593  | 3258 | 1918 | 1346 | 881  | 589 |
| 599 | 409 | 452  | 732  | 1229 | 1471  | 1613  | 1678  | 1722  | 1385 | 1152 | 754  | 688  | 535 |
| 600 | 408 | 577  | 537  | 670  | 757   | 878   | 954   | 814   | 787  | 534  | 622  | 447  | 415 |
| 601 | 295 | 335  | 415  | 451  | 524   | 578   | 524   | 582   | 500  | 399  | 466  | 345  | 406 |

ADI Is nor Dival

#### A Star's Centroid

- Centroid: the "center of gravity" of a star whose light is spread across many pixels
- Important in determining the distance between star images on a CCD detector and in performing aperture photometry
- Not a trivial process: begins with determining which pixels are "part of the star"

| ADU Readings (13 x 13 pixels) |     |      |      |      |       |       |       |       |      |      |      |      |     |
|-------------------------------|-----|------|------|------|-------|-------|-------|-------|------|------|------|------|-----|
| Pos                           | 330 | 331  | 332  | 333  | 334   | 335   | 336   | 337   | 338  | 339  | 340  | 341  | 342 |
| 589                           | 386 | 496  | 494  | 695  | 932   | 1170  | 1310  | 1198  | 1121 | 771  | 630  | 455  | 362 |
| 590                           | 450 | 622  | 748  | 1052 | 1397  | 1916  | 1961  | 1815  | 1344 | 1069 | 883  | 590  | 466 |
| 591                           | 494 | 687  | 936  | 1665 | 2356  | 3118  | 3425  | 2755  | 1967 | 1434 | 978  | 705  | 575 |
| 592                           | 626 | 892  | 1461 | 2487 | 4470  | 5530  | 5689  | 4639  | 3051 | 2028 | 1251 | 672  | 610 |
| 593                           | 768 | 1164 | 2195 | 4307 | 6910  | 9001  | 10074 | 7753  | 5251 | 2890 | 1713 | 1066 | 625 |
| 594                           | 825 | 1538 | 3221 | 6535 | 10583 | 15120 | 15572 | 12125 | 7578 | 3886 | 2273 | 1346 | 748 |
| 595                           | 930 | 1760 | 3530 | 7445 | 12876 | 18911 | 19476 | 15213 | 9978 | 5272 | 2919 | 1532 | 913 |
| 596                           | 870 | 1521 | 3102 | 6141 | 11995 | 17968 | 18835 | 14734 | 9907 | 5523 | 2828 | 1696 | 958 |
| 597                           | 664 | 1194 | 1898 | 4182 | 7531  | 10983 | 11624 | 10406 | 6526 | 3652 | 2275 | 1287 | 958 |
| 598                           | 614 | 854  | 1179 | 1837 | 3298  | 4250  | 4765  | 4593  | 3258 | 1918 | 1346 | 881  | 589 |
| 599                           | 409 | 452  | 732  | 1229 | 1471  | 1613  | 1678  | 1722  | 1385 | 1152 | 754  | 688  | 535 |
| 600                           | 408 | 577  | 537  | 670  | 757   | 878   | 954   | 814   | 787  | 534  | 622  | 447  | 415 |
| 601                           | 295 | 335  | 415  | 451  | 524   | 578   | 524   | 582   | 500  | 399  | 466  | 345  | 406 |

© Copyright Dennis M. Conti 2016

# Flux vs. Magnitude

- Flux = energy detected per area per second
- Apparent magnitude = measure of a star's brightness as seen from Earth
  - $\,\circ\,$  It is relative to a reference and is particular to a wavelength
  - $\circ$  m<sub>1</sub> = m<sub>ref</sub> 2.5 log (f<sub>1</sub>/f<sub>ref</sub>)
  - A difference of 5 magnitudes = 100 times as much brightness: Example, for  $f_1=1000$ ,  $f_{ref}=10$ , and  $m_{ref}=12$ :  $m_1=12-2.5 \log (1000/10)$  = 12-5= 7
- Absolute magnitude = a measure of a star's brightness as seen as if we were 10 parsecs (32.6 light years away)
- ADUs are sometimes used as a proxy for flux

# Equipment and Software Related to Exoplanet Observing

#### Typical Setup Location: Suburban Annapolis, MD



# Characteristics of a CCD Camera

- Gain (electrons/ADU)
- Read noise (electrons)
- Dark current (electrons/pixel/second)
- Size of pixels (in microns)
- Number of pixels
- Quantum efficiency

# Sources of Signal and Noise

- Signals:
  - Detected photons: photons that translate to ADU counts
  - Dark current: an unwanted signal that is a function of exposure time
  - Bias: a constant offset to ADU count
- Noise:
  - Shot noise uncertainty in photon counts
  - Dark current noise uncertainty in dark current
  - Readout noise uncertainty in read noise

Key: increase signal, reduce noise

# Optical Tube Assembly (OTA) Characteristics

- Type of OTA e.g., Schmidt-Cassegrain, Reflector, Refractor, etc.
- Aperture
- Focal length
- Central obstruction(s)
- Thermal characteristics
- Focusing accuracy
- Collimation
- Spherical aberration

#### **Image Characteristics**



=206.265\*pixel size(microns)/focal length(mm)



#### **Mount Characteristics**

- Type of mount e.g., German Equatorial Mount, fork mount, alt-az mount
- Periodic error in RA
- DEC backlash
- Balance
- Polar alignment accuracy
# **Imaging Chain**



# Autoguiding

- Approaches:
  - Use of a guide scope could result in flexure
  - Off-axis guiding
  - On-camera guide chip
  - On-axis guider
- All approaches use a (preferably sensitive) guide camera
- Mount control: ideally via ASCOM pulse guiding
- Software:
  - requires initial calibration
  - some software will automatically correct for changes in DEC and side-of-pier
  - Popular ones: PHD2, SkyX Pro, Maxim DL

### **Reference Locations**



# What time is it?

#### Time base = reference location and time standard (clock)



#### It is important to...

- ...know in what time base are the predicted transit times
- ...use the appropriate time base for exoplanet transit results

# Overcoming Time Drift in Image Capture Computer

- Need to periodically update image capture computer clock to synchronize it with atomic clock
- Popular freeware to do this: Dimension 4

| <b>%</b> 1:31:30                                                                                                                                                                                                                                                                                              | ) pm - Dimension 4                                                                                                                                                                             | ↔ _ □ ×                                                                                                           | Synchronization History                             | ×                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Server Server Location ntp2.usno.navy.mil US DC: U.S. Na tock.usno.navy.mil US DC: U.S. Na tock.usno.navy.mil US DC: U.S. Na ntn1 connectiv com US DF: Conecti Server: tick.usno.navy.mil Location: US DC: U.S. Naval Observato Protocol: SNTP Notes: Access Policy: open access Contact: Rich Schmidt (res@t | Protocol<br>wal Observatory, SNTP<br>wal Observatory, SNTP<br>wal Observatory, SNTP<br>vinc Newark DF SNTP<br>vinc Newark DF SNTP<br>A<br>ory, Washington, DC E<br>Ren<br>uttle.usno.navy.mil) | OK<br>Cancel<br>Help<br>About<br>dd Exit<br>dit<br>nove<br>Advanced                                               |                                                     | OK<br>ime period<br>) 24 hours<br>) 7 days<br>) 2 weeks<br>) 4 weeks<br>) 2 months<br>) 3 months<br>) 3 months<br>) All<br>Pata<br>) Seconds<br>) Seconds<br>) Seconds |
| How Often<br>Load Dimension 4 at startup<br>Once loaded, wait until online<br>Synchronize once, then exit<br>Every 2 hour(s)<br>Synchronized: +0.428s on 10/7/2016 @<br>Current Status: Waiting until online<br>Server Status: Waiting to read request                                                        | Correction<br>Time Zone<br>Maximum correction<br>2 hour(s)<br>1:25 PM (tick.usno.navy.mil)                                                                                                     | Visibility Visibility Visibility Hide when minimized Visibility Visibility Hide when minimized Visibility History | -2<br>07/18/2016 08/01 08/15 08/29 09/12 09/26/2016 | xport History<br>Zlear History                                                                                                                                         |

# How do Amateur Astronomers Create Light Curves?

- Comparison stars in the same field-of-view as the host star are used to distinguish a true transit from a common event, such as high cirrus clouds
- <u>Aperture photometry</u> is used to measure the brightness of each star, with compensation for background sky glow due to light pollution, moon light, etc.
- <u>Differential photometry</u> then compares the relative change in light between the host star and the comparison stars
- A data point on the light curve = the relative change in flux of the Host star
- A best fit of the model of a transit is made based on these data points

#### The Key Tools of Aperture Photometry: the Aperture and Annulus



#### **Online Resources**

# **Time Conversions**

- Local time to JD<sub>UTC</sub>: http://www.onlineconversion.com/julian\_date.htm
- JD<sub>UTC</sub> to BJD<sub>TDB</sub>: http://astroutils.astronomy.ohio-state.edu/time/utc2bjd.html

# **Exoplanet Information**

• NASA Exoplanet Archive:

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TransitView/nph-visibletbls?dataset=transits

|                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | · · · - 🗇                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| ← → 🖹 http://exoplanetarcl                                                                                                                                                                                                                                            | hive.ipac.caltech.edu/cgi-bin/           | TransitView/nph-visibletbls?dataset=trans                                                                                                                              | sits $ ho \star c$ exoplanetarchive.ipac.calte ×                                                                                                                                                                                                                                                                                                                           | 60 <del>x</del>                                                        |
| File Edit View Favorites T                                                                                                                                                                                                                                            | ools Help                                |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
| 👍 🧯 iCloud - Find My iPhone 💧                                                                                                                                                                                                                                         | 🗿 Astrodennis email 🛛 🤱 Ama              | azon Cloud Drive Clou 🍥 Virginia Enh                                                                                                                                   | ianced Weathe 🌠 Google Maps 💪 Google 🥂 🦄 👻 📓 🔻 🖾 🖶 🖛 🕈 Page 🔻 Safety 🕶 To                                                                                                                                                                                                                                                                                                  | ols 🕶 🔞 🕶 🦚 🐘                                                          |
| NASA EXC                                                                                                                                                                                                                                                              | PLANET                                   | ARCHIVE                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
| Home About U                                                                                                                                                                                                                                                          | ls Data                                  | Tools Support                                                                                                                                                          | Login                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| Transit Service Query Form                                                                                                                                                                                                                                            | Results Result                           | s Log About the Transit Servi                                                                                                                                          | ice                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |
| Enter parameters                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
| Targe                                                                                                                                                                                                                                                                 | ets                                      | Timespar                                                                                                                                                               | n Location                                                                                                                                                                                                                                                                                                                                                                 | Phases                                                                 |
| Multiple Targets:<br>Confirmed Transiting Planets<br>Kepler Objects of Interest<br>Confirmed Candida<br>Radial Velocity planets<br>File Upload - Targets and/or H<br>Single Target or Host:<br>Default Parameters:<br>Show/Edit Values<br>Blank Template: Custom Para | tes False Positives Iosts Browse ameters | <ul> <li>Next Event</li> <li>Observation Window [UT]<br/>Start         <ul> <li>30 Oct 2016 02:00:00</li> <li>End</li> <li>30 Oct 2016 08:00:00</li> </ul> </li> </ul> | <ul> <li>Independent of observer location</li> <li>Viewable from a particular earth observatory*<br/>Select Observatory</li> <li>Viewable from a particular space observatory*<br/>Select Observatory</li> <li>Viewable from a particular location*</li> <li>N Latitude E Longitude<br/>32.61333 -116.33195</li> <li>*Next Event queries are limited to 5 years</li> </ul> | Primary transit     Secondary eclipse     Quadrature     Custom phase: |
| Run Reset                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |

|      |                 |                                         |                      |                        |                      |                      |                          |                    | +                      | • _ 🗇 🗙         |
|------|-----------------|-----------------------------------------|----------------------|------------------------|----------------------|----------------------|--------------------------|--------------------|------------------------|-----------------|
| æ    | 🔿 💽 http        | //exoplanetarchive.ipac.caltech.edu/cgi | -bin/TransitView/nph | visibletbls?dataset=tr | ansits               | ク - C 💽 exo          | planetarchive.ipac.calte | < l                |                        | ☆ ☆ 第           |
| File | Edit View       | Favorites Tools Help                    |                      |                        |                      |                      |                          |                    |                        |                 |
| Д,   | iCloud - Fir    | d My iPhone 🧖 Astrodennis email 🏻 🕯     | Amazon Cloud Drive   | Clou 🧥 Virginia I      | Enhanced Weathe      | oogle Mans 🕒 Google  | » 🔊 🔊 🔹                  | 3 - I 🖨 - Pa       | ne v Safety v Tools v  | 🔊 – 🧉 🕅 🕅       |
| : •= | · relotation in |                                         |                      | , ciodan 🍯 ringina i   |                      |                      |                          |                    |                        | * * * *         |
|      | Column Cont     | rols X                                  |                      | HIVE                   |                      |                      |                          |                    | the best of the second |                 |
| U    | pdate Selecti   | on Reset                                | ICTITUTE             |                        |                      |                      |                          |                    | The second             | 1               |
|      |                 |                                         | ISTITUTE             |                        |                      |                      |                          |                    |                        |                 |
| -    | Default Colu    | mns 🔨                                   | Tools                | Support                | Login                |                      |                          |                    |                        |                 |
|      | — User N        | lame                                    | esults Log A         | bout the Transit Se    | rvice                |                      |                          |                    |                        |                 |
|      | - 🗹 Planet      | Name                                    | 0.00 and 30 Oct 20   | )16.08·00·00 for all   | Confirmed Transiting | Planets which are y  | viewable from lat 32 61  | 333/lon:_116 33195 |                        |                 |
|      | - Source        | e Table                                 |                      |                        |                      | r lanets milen die v |                          | 1000100            |                        |                 |
|      | RA [se          | xagesimal]                              |                      |                        |                      |                      |                          |                    |                        |                 |
|      | - Dec [s        | exagesimal]                             | ısits                |                        |                      |                      |                          |                    |                        |                 |
|      | - RA [de        | cimal degrees]                          |                      |                        |                      |                      |                          |                    |                        |                 |
|      |                 | ecimal degrees]                         | Period [days]        | Transit Duration       | Event Midpoint       | Event Midpoint       | Event Ingress            | Event Ingress JD   | Event Egress           | Event Egress JD |
|      | - Phase         | [degrees]                               |                      | [hours]                | Calendar UT          | JD UT [days]         | Calendar UT              | UT [days]          | Calendar UT            | UT [days]       |
|      | Desired         | [degrees]                               | ?                    | ?                      | ?                    | ?                    | ?                        | ?                  | ?                      | ?               |
|      | -M Period       | [days]                                  | 6.109603240          | 5.5850                 | 10/30/2016 04:37     | 2457691.69268        | 10/30/2016 00:42         | 2457691.52981      | 10/30/2016 08:31       | 2457691.85554   |
|      | – 🗹 Transi      | t Duration [hours]                      | 5.263415765          | 2.1778                 | 10/30/2016 04:37     | 2457691.69283        | 10/30/2016 03:25         | 2457691.64285      | 10/30/2016 05:49       | 2457691.74281   |
|      | - TTV fl        | ag                                      | 4.454194338          | 2.3198                 | 10/30/2016 04:47     | 2457691.69939        | 10/30/2016 03:36         | 2457691.65021      | 10/30/2016 05:57       | 2457691.74857   |
|      |                 | hm                                      | 22.708167910         | 3.6331                 | 10/30/2016 04:50     | 2457691.70187        | 10/30/2016 02:33         | 2457691.60654      | 10/30/2016 07:07       | 2457691.79720   |
|      |                 |                                         | 2.668313762          | 2.3659                 | 10/30/2016 04:55     | 2457691.70543        | 10/30/2016 03:21         | 2457691.63967      | 10/30/2016 06:30       | 2457691.77120   |
|      | Propa           | gated Midpoint Uncertainty [d           | 11.089572300         | 6.3412                 | 10/30/2016 04:58     | 2457691.70727        | 10/30/2016 01:22         | 2457691.55727      | 10/30/2016 08:34       | 2457691.85727   |
|      | — Event         | Midpoint Calendar UT                    | 4.225384512          | 2.8183                 | 10/30/2016 04:59     | 2457691.70830        | 10/30/2016 03:34         | 2457691.64928      | 10/30/2016 06:24       | 2457691.76732   |
|      | -V Event        | Midpoint JD UT (days)                   | 0.684533000          | 0.7820                 | 10/30/2016 05:11     | 245/691./1616        | 10/30/2016 04:20         | 245/691.68058      | 10/30/2016 06:02       | 245/691./51/3   |
|      | Event           |                                         | 10.006529950         | 5.2181                 | 10/30/2016 05:15     | 2457691.71883        | 10/30/2016 02:23         | 2457691.59971      | 10/30/2016 08:06       | 245/691.83/94   |
|      | Event           | Midpoint Airmass                        | 4.148141000          | 2.4024                 | 10/30/2016 05:16     | 2457691.71959        | 10/30/2016 02:59         | 245/691.62459      | 10/30/2016 07:32       | 245/691.81458   |
|      |                 | >                                       | 3.895936844          | 2.3389                 | 10/30/2016 05:22     | 2457691.72395        | 10/30/2016 04:09         | 245/691.6/320      | 10/30/2016 06:35       | 245/691.77470   |
|      | 0Z -            |                                         | 40.699444300         | 7.2079                 | 10/30/2016 05:31     | 2457691.73015        | 10/30/2016 01:26         | 2457691.56013      | 10/30/2016 09:36       | 245/691.90018   |
|      | 0.3<br>C.4      |                                         | 1 217514000          | 2.7646                 | 10/20/2010 05.52     | 2457051.75112        | 10/20/2010 03.13         | 2457051.05544      | 10/20/2010 07:30       | 2457051.02075   |
|      | 04<br>CF        |                                         | 1.21/514000          | 2.7646                 | 10/30/2016 05:35     | 245/091./3324        | 10/30/2016 03:37         | 245/091.0508/      | 10/30/2016 07:34       | 245/091.01501   |
| <    | L               |                                         |                      |                        |                      |                      |                          |                    |                        |                 |
| Shov | ving records    | 50 to 65 of 91 (91 total)               |                      |                        |                      |                      |                          | Clear              | Check All              | Reset Filters   |
|      |                 |                                         |                      |                        |                      |                      |                          |                    |                        |                 |

| (2) (3) <b>b</b> ttn://e                                                                                                                                                                                                                                                                               | exonlanetarchive inac <b>calt</b>                                                                                                                                                                                                                                                                   | ech.edu                             | /cai-bin/Dis    | nlavOverview/nn | h-DisplayOver | view?obiname=KELT-18    | Ntype=PL ( 0                 | r Č 🔊 avariana        | tarchive inac caltech                | KELT_1                              | ~                              | + _ ⊡              | ×<br>A |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|-----------------|---------------|-------------------------|------------------------------|-----------------------|--------------------------------------|-------------------------------------|--------------------------------|--------------------|--------|
| File Edit View F                                                                                                                                                                                                                                                                                       | avorites Tools Help                                                                                                                                                                                                                                                                                 | ecniedu                             | / cgi-biii/ bis | playoverview/hp | n-Displayover | view.objname=kcc1+re    | atype=rer po                 |                       | tarcnive.ipac.caitecn                | NELI-I                              | ^                              |                    | ~ ~    |
| NASA<br>NASA Exol                                                                                                                                                                                                                                                                                      | EXOPLA<br>PLANET SCIE                                                                                                                                                                                                                                                                               |                                     |                 |                 | IVE           |                         |                              |                       |                                      |                                     |                                |                    |        |
| Home                                                                                                                                                                                                                                                                                                   | About Us                                                                                                                                                                                                                                                                                            | Data                                | 1               | Tools           | Support       | Login                   |                              |                       |                                      |                                     |                                |                    |        |
| Overview                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     | ^                                   |                 |                 |               |                         |                              |                       |                                      |                                     |                                |                    |        |
| Confirmed Host Over<br>This page contains all a<br>archive about a specific<br>stellar and statistical in<br>default, and views can<br>and de-selecting fields<br>Default parameter valu<br>Confirmed Planets tabl<br>orange background for<br><u>Columns</u> documentatio<br>the user's guide for a d | view<br>available information in t<br>c planet host. All planeta<br>formation displays by<br>be customized by select<br>in the bottom-left pane.<br>es (those listed in the<br>le) are indicated by an<br>the row. See the <u>API D</u><br>on for column definitions<br>letailed explanation of thi | he<br>ry,<br>ing<br>tta<br>and<br>s |                 | Р               | LAN           | ET HOS                  | 6T O\                        | /ERVIE                | W PAGI                               | ∃                                   | FinderCh                       | art 2MASS          |        |
| page.                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     | -                                   |                 |                 |               |                         |                              | Object and Al         | iases                                |                                     |                                |                    |        |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                     | Defa            |                 | 10/19         | E 1000126 90+3923       | 301.6                        | TVC 2785 0213         | Aliases                              | 85 02130                            | 200455                         | 00012691+3923017   | - 1    |
|                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     |                                     |                 | NEL1-1          | VII           | 52 0000 120.00 10020    | 01.0                         | 110 2100-0210         | 000 021                              | 00-02100                            | 210/100 0                      | 0001203110320017   |        |
| Sections Update                                                                                                                                                                                                                                                                                        | Select All Rese                                                                                                                                                                                                                                                                                     | ~                                   |                 |                 |               |                         | NASA                         | A Exoplanet Ar        | chive Links                          |                                     |                                |                    |        |
| Dianot Par                                                                                                                                                                                                                                                                                             | amotors                                                                                                                                                                                                                                                                                             |                                     |                 | Planet          |               |                         | Related C                    | Overviews             |                                      |                                     | Transit Servic                 | ce                 |        |
| Planet Tra                                                                                                                                                                                                                                                                                             | nsit Properties                                                                                                                                                                                                                                                                                     | ^                                   |                 | KEI             | T-1 h         | Planet                  | Host                         | Keple                 | r Pipeline                           |                                     |                                | KELT-1 b Transits  |        |
| Notes                                                                                                                                                                                                                                                                                                  | nait i ropeniea                                                                                                                                                                                                                                                                                     |                                     |                 | 1121            |               |                         |                              |                       |                                      |                                     |                                |                    |        |
| General In                                                                                                                                                                                                                                                                                             | formation                                                                                                                                                                                                                                                                                           |                                     |                 |                 |               |                         | Pl                           | anet Orbital Pr       | operties                             |                                     |                                |                    |        |
| Summary                                                                                                                                                                                                                                                                                                | of Stellar Information                                                                                                                                                                                                                                                                              |                                     | Planet          | Period (        | days)         | Semi-Major Axis<br>(AU) | Inclination<br>(deg)         | Eccentricity          | Time of Periastron<br>Passage (days) | Longitude of<br>Periastron<br>(deg) | Date of<br>Orbital<br>Solution | Reference          |        |
| Stellar Information                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                                                                                                                   |                                     | b               | 1.21749448±     | 0.00000080    | null                    | null                         | null                  | ทเ                                   | III null                            | null                           | Baluev et al. 2015 |        |
| Astrometry                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                     | b               | 1.21751         | 4±0.000015    | 0.02466±0.00016         | 87.8 <sup>+1.3</sup><br>-1.9 | 0.0099 +0.010 -0.0089 | 2455914.07 +0.24                     | 61 <sup>+71</sup><br>-79            | null                           | Siverd et al. 2012 |        |
| Photometric Mean                                                                                                                                                                                                                                                                                       | surements                                                                                                                                                                                                                                                                                           |                                     |                 |                 |               |                         |                              |                       |                                      |                                     |                                |                    |        |
| Associated Data                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     | $\sim$                              | Dia             | M -1-72         |               | Mass                    |                              | Planet Param          | neters                               | Dev. 1                              | E all'h i                      | Defe               |        |
| Version 2.2                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     |                                     | Planet          | M sin(i)        |               | Mass                    |                              | Ra                    | aius                                 | Density                             | Temperatur                     | e Reference        |        |

| (🖓 (🕄) 🔜 http                                      | ://exoplanetarchive.ipac.                                    | caltech.edu/cg   | gi-bin/Dis | playOverv         | iew/nph            | -DisplayOvervie                 | w?objname | =KELT-1&t            | type=PL4           | 0-0                    | exo          | planetarchiv         | e.ipac.calte        | ch 💽 KE                             | LT-1                                              |                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ()<br>()           |
|----------------------------------------------------|--------------------------------------------------------------|------------------|------------|-------------------|--------------------|---------------------------------|-----------|----------------------|--------------------|------------------------|--------------|----------------------|---------------------|-------------------------------------|---------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| File Edit View                                     | Favorites Tools He                                           | elp              |            |                   |                    |                                 |           |                      |                    |                        |              |                      |                     |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| NASA<br>NASA EX                                    | EXOPL                                                        | ANE              | T /        |                   | CHI                | VE                              |           |                      |                    |                        |              |                      |                     |                                     |                                                   |                                     | and the second s |                    |
| Home                                               | About Us                                                     | Data             | 1          | Tools             |                    | Support                         | Lo        | gin                  |                    |                        |              |                      |                     |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Overview                                           |                                                              | ^                |            |                   |                    | IIII                            |           |                      |                    |                        |              |                      |                     | 1                                   |                                                   | -                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Confirmed Host O                                   | verview                                                      |                  |            |                   |                    |                                 |           |                      |                    | Plar                   | net Pa       | arameter             | s                   |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| This page contains<br>archive about a spe          | all available information i<br>cific planet host. All plan   | in the<br>etary, | Planet     | M si              | n(i)               |                                 | Mass      |                      |                    |                        |              | Radius               |                     |                                     | Dens                                              | ty Equilit<br>Tempe                 | orium<br>rature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference          |
| stellar and statistica<br>default, and views c     | I information displays by<br>an be customized by sel         | lecting          |            | (Jupiter<br>Mass) | (Earth<br>Mass)    | (Jupiter<br>Mass)               | (Earth    | Mass)                | (9                 | Solar Radii)           |              | (Jupiter Ra          | adii) (E            | arth Radii)                         | (g/cm                                             | <sup>3</sup> ) (K                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| Default parameter v                                | alues (those listed in the                                   | ie.              | b          | null              | null               | null                            |           | null                 |                    |                        | null         |                      | null                | n                                   | ull                                               | null                                | null                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Baluev et al. 2015 |
| Confirmed Planets t<br>orange background           | able) are indicated by an<br>for the row. See the <u>API</u> | 1<br>Data        | b          | null              | null               | 27.23 <sup>+0.50</sup><br>-0.48 | 8654.15   | +158.908<br>-152.552 | 0.1140             | )99 +0.0032<br>-0.0022 | 8935<br>6143 | 1.110 +0.0<br>-0.0   | <sup>32</sup> 12.44 | 420 <sup>+0.35868</sup><br>-0.24659 | 8 24.7 1                                          | 1.4<br>1.9                          | null                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Siverd et al. 2012 |
| Columns documenta<br>the user's quide for<br>page. | ation for column definitio<br>a detailed explanation of      | ns and<br>f this |            |                   |                    |                                 |           |                      |                    | Planet 1               | Trans        | it Prope             | rties               |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                                    |                                                              |                  | Planet     | Depth             | (perc)             | Duration (                      | days) [   | Duration (I          | hours)             | Mid-F                  | Point (d     | lays)                | Impact<br>Parameter | Occultatio<br>Depth<br>(perc)       | n Ratio of<br>Distance<br>to<br>Stellar<br>Radius | Ratio of Pla<br>to Stella<br>Radius | anet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference          |
| Sections Update                                    | e Select All Re                                              | ese 🗸            | b          |                   | nu                 | II 0.11320±0                    | 00084     | 2.7168±              | 0.0202             | 2456093.               | 13464        | ±0.00019             | 0.0632              | nul                                 | l null                                            | 0.0783±0.0                          | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Baluev et al. 2015 |
| - 🗹 Planet F                                       | Parameters                                                   |                  | b          | 0.6086            | +0.0094<br>-0.0089 | 0.11519 +0                      | .00066 2. | .76456 <sup>+0</sup> | 0.01584<br>0.01392 | 245591                 | 4.1628       | 3 +0.0023<br>-0.0022 | null                | nul                                 | l null                                            |                                     | null                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Siverd et al. 2012 |
| Planet 7                                           | Fransit Properties                                           |                  |            |                   |                    |                                 |           |                      |                    |                        |              |                      |                     |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| ✓ Notes                                            |                                                              |                  |            |                   | D                  |                                 |           |                      |                    | N. A                   | Not          | tes                  |                     |                                     | D (                                               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| General                                            | Information                                                  |                  |            |                   | Р                  | lanet                           |           |                      |                    | Note                   | o Data A     | Available            |                     |                                     | Refe                                              | ence                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                                    | n, of Stollar Informati                                      |                  |            |                   |                    |                                 |           |                      |                    |                        |              |                      |                     |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                                    | tion                                                         | on               |            |                   |                    |                                 |           |                      |                    | Gene                   | ral In       | formatio             | n                   |                                     |                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                                    |                                                              |                  | Planet     |                   | Dis                | covery                          |           |                      | Systen             | n Informatio           | on           |                      | Kepler              | TTV E                               | oplanet En                                        | cyclopedia                          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | xoplanets Data     |
| Astrometry                                         | · · • -                                                      |                  |            | Method            | Year               | Referenc                        | e Ni      | umber of<br>Stars    | Nur                | nber of<br>anets       | Circu<br>F   | mbinary<br>Flag      | Flag                | Flag                                | Lin                                               | ĸ.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Explorer Link      |

Photometric Measurements

V

Associated Data

Version 2.2

Y

1

0

Summary of Stellar Information

0

0

Unavailable

b Transit 2012 Siverd et al. 2012

Unavailable

⇔

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/DisplayOverview/nph-DisplayOverview?objname=KELT-1&type=PL/ 🔎 👻 🖒

Number of Spectra

Type

Start Time

End Time

exoplanetarchive.ipac.caltech....

6 2 8

Reference

File

3

Edit View Favorites Tools Help File

#### NASA EXOPLANET ARCHIVE NASA Exoplanet Science Institute

| Home                                                                                                                                   | About Us | Data   |   | Tools   |      | Support            | Login              |                      |                      |      |      |             |               |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---|---------|------|--------------------|--------------------|----------------------|----------------------|------|------|-------------|---------------|--|
| Overview                                                                                                                               |          | ^      |   | Method  | Year | Reference          | Number of<br>Stars | Number of<br>Planets | Circumbinary<br>Flag | Flag | Flag | Link        | Explorer Link |  |
| Confirmed Host Overview<br>This page contains all available information in the<br>archive about a specific planet host. All planetary, |          | n the  | b | Transit | 2012 | Siverd et al. 2012 | 1                  | 1                    | 0                    | 0    | 0    | Unavailable | Unavailable   |  |
|                                                                                                                                        |          | etary, |   |         |      |                    |                    |                      |                      |      |      |             |               |  |

| ······································                                                               |                                       |                                |                                                  |                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|--------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| stellar and statistical information displays by<br>default, and views can be customized by selecting |                                       | Summary of Stellar Information |                                                  |                    |  |  |  |  |  |  |  |
| and de-selecting fields in the bottom-left pane.                                                     | Right Ascension                       | 00h01m26.91s                   | Declination                                      | +39d23m01.7s       |  |  |  |  |  |  |  |
| Confirmed Planets table) are indicated by an                                                         | Galactic Longitude (deg)              | 112.50391                      | Galactic Latitude (deg)                          | -22.47352          |  |  |  |  |  |  |  |
| orange background for the row. See the API Data                                                      | Parallax (mas)                        | null                           | Distance (pc)                                    | 262±14             |  |  |  |  |  |  |  |
| the <u>user's quide</u> for a detailed explanation of this                                           | RA Proper Motion (mas/yr)             | null                           | Dec Proper Motion (mas/yr)                       | null               |  |  |  |  |  |  |  |
| page.                                                                                                | Total Proper Motion (mas/yr)          | null                           | Radial Velocity (km/s)                           | -14.2±0.2          |  |  |  |  |  |  |  |
|                                                                                                      | B-band (mag)                          | 11.363±0.065                   | K-band (mag)                                     | 9.437±0.019        |  |  |  |  |  |  |  |
|                                                                                                      | Spectral Type                         | null                           | Effective Temperature (K)                        | 6518±50            |  |  |  |  |  |  |  |
|                                                                                                      | Surface Gravity (log10(cm/s2))        | null                           | Luminosity (log10(Lsun))                         | 0.541579±0.0266225 |  |  |  |  |  |  |  |
| Sections Update Select All Rese 🗸                                                                    | Radius (R <sub>sun</sub> )            | 1.462±0.037                    | Mass (M <sub>sun</sub> )                         | 1.324±0.026        |  |  |  |  |  |  |  |
|                                                                                                      | Density (g/cm <sup>3</sup> )          | null                           | Age (Gyr)                                        | null               |  |  |  |  |  |  |  |
| Planet Parameters                                                                                    | Metallicity (dex)                     | null                           | Metallicity Ratio                                | null               |  |  |  |  |  |  |  |
| Planet Transit Properties                                                                            | V sin(i) (km/s)                       | 56±2                           | S-index                                          | null               |  |  |  |  |  |  |  |
| Notes                                                                                                | log R'HK                              | null                           | X-ray activity, log(L <sub>x</sub> )             | null               |  |  |  |  |  |  |  |
| General Information                                                                                  | Number of Hipparcos Light Curves      | 0                              | Number of Photometric non-Hipparcos Light Curves | 0                  |  |  |  |  |  |  |  |
|                                                                                                      | Number of Radial Velocity Time Series | 0                              | Number of Amateur Light Curves                   | 0                  |  |  |  |  |  |  |  |

Summary of Stellar Information

ŧ۰ Stellar Information

- Astrometry ÷-
- ÷ Photometric Measurements
- Associated Data

```
http://exoplanetarchive.ipac.caltech.edu/index.html
```

Number of Data Points

0 Number of Images

Literature Time Series

No Data Available

Wavelength

Method

Instrument/Telescope

• Exoplanet Transit Database (ETD) Website:

http://var2.astro.cz/ETD/predictions.php

|                     |                                        |                                                                |                   |                           |                 |               |             |                | ↔ _ □                                                           | ×   |  |  |  |  |
|---------------------|----------------------------------------|----------------------------------------------------------------|-------------------|---------------------------|-----------------|---------------|-------------|----------------|-----------------------------------------------------------------|-----|--|--|--|--|
| 🗲 🕞 🏉 http://va     | ar2. <b>astro.cz</b> /ETD/predic       | tions.php                                                      | JDmidnight        | =2457691.50000&cd 🔎 👻     | ් 🥖 etd -       | · Exoplanet T | 'ransit Dat | . ×            | 60 53                                                           | £63 |  |  |  |  |
| File Edit View Fa   | vorites Tools Hel                      | р                                                              |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| 🚖 🧯 iCloud - Find M | y iPhone 🧧 Astrode                     | nnis emai                                                      | 1                 | » 🟠                       | • 🖾 • 🗆         | 3 🖶 🔻         | Page 👻 S    | afety 🔻 To     | ools 🕶 🔞 🕶 🦚 🐘 🕴                                                | Ø   |  |  |  |  |
| transiters:         | ETD - Exo                              | plane                                                          | et Trans          | it Database               |                 |               |             |                |                                                                 | ~   |  |  |  |  |
| CoRoT-1 b           | Observers                              | comm                                                           | unity   H         | ow to contribute t        | O ETD   M       | lodel-fit     | your da     | ta   Tra       | nsit predictions                                                |     |  |  |  |  |
| CoRoT-10 b          |                                        | KEPLER Transit predictions   KEPLER Candidates                 |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-11 b          | Your ELONGITUDE                        | our ELONGITUDE (in deg): -116.33 0° - 360°                     |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-12 b          | Your LATITUDE                          | Your LATITUDE (in deg): 32.3133 90° - 0°90°                    |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-13 b          | <u>Available p</u>                     | Available predictions: (UT evening date)                       |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-17 b          | 2016-10- 07                            | , 08, 0                                                        | 9, 10, 11         | , 12, 13, 14, 15,         | 16, 17, 18      | , 19, 20,     | 21, 22      | , 23, 24       | <sup>1</sup> , 25, 26, 27, 28,                                  |     |  |  |  |  |
| CoRoT-18 b          | <b>29</b> , 30, 31, <b>2016-11-</b> 01 | , 02, 0                                                        | 3, 04, 05         | , 06, 07,                 |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-19 b          | User defined tim                       | Iser defined time span: From: YYYY-MM-DD Till: YYYY-MM-DD Show |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-2 b           |                                        |                                                                |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-20 b          | Transits pre                           | diction                                                        | s for ELC         | DNGITUDE: -116.           | 33195° ar.      | nd LATIT      | UDE: 3      | 2.31333        | 3~                                                              |     |  |  |  |  |
| CoRoT-3 b           | OBJECT                                 |                                                                | BEGIN<br>(UT/h,A) | CENTER<br>(DD.MM. UT/h,A) | END<br>(UT/h,A) | D<br>(min)    | V<br>(MAG)  | DEPTH<br>(MAG) | Elements<br>Coords                                              |     |  |  |  |  |
| CoRoT-4 b           |                                        |                                                                |                   |                           |                 |               |             |                |                                                                 |     |  |  |  |  |
| CoRoT-5 b           | HD189733 b                             | Vul                                                            | 1:32<br>80°,SW    | 30.10. 2:27<br>71°,SW     | 3:21<br>60°,W   | 109.6         | 7.67        | 0.0282         | 53988.80336+2.2185733*E<br>RA: 20 00 43.713<br>DE: +22 42 39.07 |     |  |  |  |  |
| CoRoT-6 b           | WASP-3 b                               |                                                                | 1:44              | 30.10. 2:53               | 4:01            | 137           | 10.64       | 0.0123         | 54143.8504+1.846835*E                                           |     |  |  |  |  |
| CoRoT-8 b           |                                        | Lyr                                                            | 66°,W             | 52°,W                     | 38°,NW          |               |             |                | RA: 18 34 31.67<br>DE: +35 39 41.9                              |     |  |  |  |  |
| CoRoT-9 b           | HAT-P-23 b                             | Dal                                                            | 1:56              | 30.10. 3:01               | 4:06            | 130.75        | 12.43       | 0.0076         | 54852.26464+1.212884*E<br>RA: 20 24 29.73                       |     |  |  |  |  |
| EPIC-               |                                        | Del                                                            | /4°,5             | 03°,5W                    | 53°,₩           |               |             |                | DE: +16 45 44.3                                                 | _   |  |  |  |  |
| 203//1098 b         | KELT-1 b                               | And                                                            | 4:19<br>78°,NE    | 30.10. 5:35<br>82°,NW     | 6:52<br>69°,NW  | 153.245       | 10.7        | 0.0066         | 55909.292797+1.217514*E<br>RA: 00 12 6.92                       |     |  |  |  |  |
| 203771098 c         | ·                                      |                                                                |                   |                           |                 |               |             |                | DE: 37 23 01.7                                                  | -~  |  |  |  |  |
| <                   | I MACD_02 h                            |                                                                | 5.04              | 20 10 6.11                | 7.10            | 10/ 1         | 10.07       | 0 0110         | 56079 5647+7 7275271*F                                          |     |  |  |  |  |
|                     |                                        | (C)                                                            | Copyria           | pht Dennis M              | Conti           | 2016          |             |                |                                                                 | -   |  |  |  |  |



|       | http://var2.astro.cz/ETD            | /predict_detail.php?delka | =-116.33195&submit=submit          | &sirka=32.6133&STARNAME=KELT-18   | 🎾 👻 🍘 ETD - Exoplanet Transit Dat. |  |  |  |  |  |  |  |
|-------|-------------------------------------|---------------------------|------------------------------------|-----------------------------------|------------------------------------|--|--|--|--|--|--|--|
| le Ed | it View Favorites Tools<br>GJ3470 b | Help                      |                                    |                                   |                                    |  |  |  |  |  |  |  |
|       |                                     |                           |                                    |                                   |                                    |  |  |  |  |  |  |  |
|       | GJ436 b                             |                           | 15' x 15' image from               | n the Digitized Sky Survey at the | STScI Archive.                     |  |  |  |  |  |  |  |
|       | HAT-P-1 b                           | Your ELONGITU             | GITUDE (in deg): -116.33 0° - 360° |                                   |                                    |  |  |  |  |  |  |  |
|       | HAT-P-                              | Your LATITU               | DE (in deg): 32.6133 90°           | - 0°90°                           |                                    |  |  |  |  |  |  |  |
|       | 10/WASP-11 b                        |                           |                                    |                                   |                                    |  |  |  |  |  |  |  |
|       | HAT-P-11 b                          |                           | Transits p                         | redictions for NEXT               | 365 days.                          |  |  |  |  |  |  |  |
|       |                                     |                           | ELONGITUDE: -                      | 110.33195 and LATT                | IUDE: 32.0133                      |  |  |  |  |  |  |  |
|       | HAT-P-12 D                          | Trans                     | it occurs below 20°                | 'in the sky.   During the         | daylight.   Observable.            |  |  |  |  |  |  |  |
|       | HAT-P-13 b                          | Tmid (H1D)                | BEGIN (UT/h.A)                     | CENTER (DD.MM. UT/h A)            | END (UT/b.A)                       |  |  |  |  |  |  |  |
|       | HAT-P-14 b                          | (150)                     |                                    |                                   |                                    |  |  |  |  |  |  |  |
|       | HAT-P-15 b                          | 2457671.036               | 09.10 11:34 (31°,NW)               | 09.10. 12:51 (17°,NW)             | 09.10 14:07 (5°,NW)                |  |  |  |  |  |  |  |
|       |                                     | 2457672.253               | 10.10 16:47 (-14°,N)               | 10.10. 18:04 (-17°,N)             | 10.10 19:21 (-16°,N)               |  |  |  |  |  |  |  |
|       | HAT-P-16 b                          | 2457673.471               | 11.10 22:01 (-1°,NE)               | 11.10. 23:17 (10°,NE)             | 12.10 0:34 (22°,NE)                |  |  |  |  |  |  |  |
|       | HAT-P-17 b                          | 2457674.688               | 13.10 3:14 (53°,NE)                | 13.10. 4:30 (68°,NE)              | 13.10 5:47 (81°,NE)                |  |  |  |  |  |  |  |
|       | HAT-P-18 b                          | 2457675.906               | 14.10 8:27 (63°,NW)                | 14.10. 9:44 (48°,NW)              | 14.10 11:00 (34°,NW)               |  |  |  |  |  |  |  |
|       |                                     | 2457677.123               | 15.10 13:40 (5°,NW)                | 15.10. 14:57 (-5°,NW)             | 15.10 16:13 (-13°,N)               |  |  |  |  |  |  |  |
|       | HAT-P-19 b                          | 2457678.341               | 16.10 18:53 (-16°,N)               | 16.10. 20:10 (-11°,NE)            | 16.10 21:27 (-3°,NE)               |  |  |  |  |  |  |  |
|       | HAT-P-2 b                           | 2457679.558               | 18.10 0:07 (22°,NE)                | 18.10. 1:23 (36°,NE)              | 18.10 2:40 (50°,NE)                |  |  |  |  |  |  |  |
|       | HAT-P-20 h                          | 2457680.776               | 19.10 5:20 (81°,NE)                | 19.10. 6:36 (80°,NW)              | 19.10 7:53 (66°,NW)                |  |  |  |  |  |  |  |
|       |                                     | 2457681.993               | 20.10 10:33 (34°,NW)               | 20.10. 11:50 (20°,NW)             | 20.10 13:06 (7°,NW)                |  |  |  |  |  |  |  |
|       | HAT-P-21 b                          | 2457683.211               | 21.10 15:46 (-13°,N)               | 21.10. 17:03 (-17°,N)             | 21.10 18:20 (-17°,N)               |  |  |  |  |  |  |  |
|       | HAT-P-22 b                          | 2457684.428               | 22.10 20:59 (-4°,NE)               | 22.10. 22:16 (7°,NE)              | 22.10 23:33 (20°,NE)               |  |  |  |  |  |  |  |
|       | HAT-P-23 h                          | 2457685.646               | 24.10 2:13 (50°,NE)                | 24.10. 3:29 (64°,NE)              | 24.10 4:46 (79°,NE)                |  |  |  |  |  |  |  |
|       | HAT-1-23 D                          | 2457686.863               | 25.10 7:26 (66°,NW)                | 25.10. 8:43 (51°,NW)              | 25.10 9:59 (37°,NW)                |  |  |  |  |  |  |  |
|       | HAT-P-24 b                          | 2457688.081               | 26.10 12:39 (8°,NW)                | 26.10. 13:56 (-3°,NW)             | 26.10 15:12 (-12°,NW)              |  |  |  |  |  |  |  |
|       | HAT-P-25 b                          | 2457689.298               | 27.10 17:52 (-17°,N)               | 27.10. 19:09 (-13°,N)             | 27.10 20:26 (-5°,NE)               |  |  |  |  |  |  |  |
|       |                                     | 2457690.516               | 28.10 23:06 (19°.NE)               | 29.10. 0:22 (32°,NE)              | 29.10 1:39 (47°,NE)                |  |  |  |  |  |  |  |
|       | HAI-P-20 D                          | 2457691.733               | 30.10 4:19 (78°,NE)                | 30.10. 5:35 (82°,NW)              | 30.10 6:52 (69°,NW)                |  |  |  |  |  |  |  |
|       | HAT-P-                              | 2457692.951               | 31.10 9:32 (38°,NW)                | 31.10. 10:49 (23°.NW)             | 31.10 12:05 (10°.NW)               |  |  |  |  |  |  |  |

#### http://exoplanets.org



| Http://exoplanets.org/detail/KELT-2_A_b                          |                                |                                 | ,♀ ▾ ♂ 🥔 Exoplanets Data                            | Explor 💽 KELT-1     |             | 🨂 Exoplanets Data Exp 🗙 |   |
|------------------------------------------------------------------|--------------------------------|---------------------------------|-----------------------------------------------------|---------------------|-------------|-------------------------|---|
| t View Favorites Tools Help<br>nets Data Explorer Table Plots Se | nd data reports to: datamaster | @exoplanets.org and b           | ug reports to: webmaster@exoplanets.org             |                     |             |                         | Н |
|                                                                  |                                | KE                              | LT-2 A b                                            |                     |             |                         |   |
|                                                                  |                                |                                 | Orbital Parameters                                  | St                  | ellar Prope | erties                  |   |
|                                                                  |                                | Msin(i) [mjupiter]              | 1.520 ± 0.09                                        | Star Name           |             | KELT-2 A                |   |
|                                                                  |                                | Planet Mass 1 521 ± 0.09        |                                                     | Binary Flag         |             | 1                       |   |
|                                                                  |                                | [mjupiter]                      | 1.521 - 0.05                                        | Mass of Star        | [msun]      | 1.308 +0.028/-0.025     |   |
|                                                                  |                                | Semi-Major<br>Axis [au]         | 0.05497 ± 0.00092                                   | Radius of Star      | [rsun]      | 1.828 +0.07/-0.034      |   |
| Velocity Profile Curren                                          | tlv Unavailable                | Separation [au]                 | 0.05497 ± 0.00092                                   | [Fe/H]              |             | -0.018 ± 0.069          |   |
| · · · · · · · · · · · · · · · · · · ·                            | ,                              | Orbital Period                  |                                                     | T <sub>eff</sub>    | [k]         | 6151 +49/-50            |   |
|                                                                  |                                | [day]                           | 4.113791 +1×10 <sup>-5</sup> /-9.9×10 <sup>-6</sup> | Density of star     | [g/cm^3]    | Unavailable             |   |
|                                                                  |                                | Velocity<br>Semiamplitude       | 161 1 179/70                                        | log10(g)            |             | 4.030 +0.013/-0.028     |   |
|                                                                  |                                | Semiamplitude<br>[m/s]          | 101.1 +7.8/-7.9                                     | Vsin(i)             | [km/s]      | 9.0 ± 2                 |   |
|                                                                  |                                | Orbital                         | 0                                                   | Gamma               | [km/s]      | Unavailable             |   |
|                                                                  |                                | Orbit                           | 88.6 +1/-1.4                                        | Ste                 | ellar Magni | itudes                  |   |
| Discovery and Ref                                                | erences                        | Inclination [deg]               | 00.0 11/ 1.1                                        | V mag               |             | 8.7                     |   |
| Other Name                                                       | Unavailable                    | Argument of<br>Periastron [deg] | 90                                                  | B-V                 |             | 0.52                    |   |
| First Publication Date                                           | 2012                           | BigΩ [dea]                      | Unavailable                                         | 2MASS J             |             | 7.7                     |   |
| Method of discovery for the planet                               | Transit                        | Time of                         |                                                     | 2MASS H             |             | 7.4                     |   |
| Method of discovery of first planet in                           | Transit                        | Periastron [jd]                 | 2455974.60335 +0.00082/-0.00083                     | 2MASS K₅            |             | 7.3                     |   |
| Orbit Deference                                                  | Roothy 2012                    | Velocity Slope                  | 0.63 ± 0.24                                         | S <sub>HK</sub>     |             | Unavailable             |   |
| First Deference                                                  | Beatty 2012                    | [m/s/day]                       |                                                     | log R <sub>HK</sub> |             | Unavailable             |   |
| EDE Link                                                         |                                | Misalignment                    | Unavailable                                         | KP                  |             | Unavailable             |   |
|                                                                  | EPE LINK KELT-ZA               |                                 |                                                     |                     |             |                         |   |
|                                                                  |                                | Transit                         | ×                                                   | Coord               | inates and  | Catalogs                |   |

# Predicting Transit Times Example: Kelt-1

#### From Discovery Paper (Siverd et al. 2012):

| MEDIAN       | TAB<br>VALUES AND 68% CONFIDENCE IN<br>PARAMETERS OF TH | LE 4<br>ITERVALS FOR THE PHY<br>HE KELT-1 SYSTEM | SICAL AND ORBITAL         | TABLE 5         MEDIAN VALUES AND 68% CONFIDENCE INTERVALS FOR THE LIGHCURVE AND RADIAL         VELOCITY PARAMETERS OF THE KELT-1 SYSTEM |                                                                   |                                                        |  |  |  |
|--------------|---------------------------------------------------------|--------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| 17           | Description (Units)                                     | Mahar (c. (0)                                    | $V_{\rm c} = 0$           | Parameter                                                                                                                                | Description (Units)                                               | Value                                                  |  |  |  |
| variable     | Description (Units)                                     | Value $(e \neq 0)$                               | value $(e \pm 0)$         | PV Decemptor                                                                                                                             | No                                                                |                                                        |  |  |  |
| Stallar Dara | matars                                                  |                                                  |                           |                                                                                                                                          | Time of inferior continuetion (DID )                              | 2455014 1 628±0 0023                                   |  |  |  |
| Stellar Para | meters.                                                 |                                                  |                           | <i>I<sub>C</sub></i>                                                                                                                     | Time of inferior conjunction (BJD <sub>TDB</sub> )                | 2455914.1628_0.0022                                    |  |  |  |
| $M_* \ldots$ | Mass $(M_{\odot})$                                      | $1.324 \pm 0.026$                                | $1.322^{+0.026}_{-0.025}$ | <i>I</i> <sub><i>P</i></sub>                                                                                                             | Time of periastron (BJD <sub>TDB</sub> )                          | 2455914.07-0.26                                        |  |  |  |
| <i>R</i> *   | Radius (R <sub>O</sub> )                                | $1.462^{+0.037}_{-0.024}$                        | $1.452^{+0.033}_{-0.019}$ | K                                                                                                                                        | RV semi-amplitude (m s $^{-1}$ )                                  | $4239 \pm 32$                                          |  |  |  |
| $L_*$        | Luminosity (L <sub>O</sub> )                            | 3.48+0.22                                        | 3.43+0.20                 | $\Lambda_R$                                                                                                                              | Minimum mass (Mr)                                                 | $542 \pm 15$<br>27 20 <sup>+0.49</sup>                 |  |  |  |
| $\rho_*$     | Density (cgs)                                           | 0.597+0.026                                      | 0.610+0.018               | $M_P \sin i$<br>$M_P / M_{\odot}$                                                                                                        | Mass ratio                                                        | $0.01964 \pm 0.00028$                                  |  |  |  |
| 109 9        | Surface gravity (cgs)                                   | 4.229+0.012                                      | 4.2351+0.0087             | <i>u</i>                                                                                                                                 | RM linear limb darkening                                          | 0.5842+0.0044                                          |  |  |  |
| T.f.         | Effective temperature (K)                               | $6518 \pm 50$                                    | $6517 \pm 49$             | 20                                                                                                                                       | zero point for Orbital RVs (Table 7) (m s <sup>-1</sup> )         | $-14200 \pm 50 \text{ (stat.)} \pm 200 \text{ (svs.)}$ |  |  |  |
| [Fe/H].      | Metallicity                                             | $0.008 \pm 0.073$                                | $0.009 \pm 0.073$         | γι                                                                                                                                       | zero point for RM RVs (Table 8) (m s <sup><math>-1</math></sup> ) | $-14200^{+56}_{50}$ (stat.) $\pm 200$ (sys.)           |  |  |  |
| $v \sin I_*$ | Rotational velocity (m $s^{-1}$ )                       | $56000 \pm 2000$                                 | $56000 \pm 2000$          | $e\cos\omega_*$ .                                                                                                                        |                                                                   | 0.0018+0.0092                                          |  |  |  |
| λ            | Spin-orbit alignment (degrees)                          | $2 \pm 16$                                       | $1 \pm 15$                | $e\sin\omega_*$                                                                                                                          |                                                                   | $0.0041^{+0.011}_{-0.0062}$                            |  |  |  |
|              |                                                         |                                                  |                           | f(m1, m2)                                                                                                                                | Mass function (M <sub>J</sub> )                                   | $0.01006^{+0.00038}_{-0.00037}$                        |  |  |  |
| Planetary Pa | arameters:                                              |                                                  |                           | Primary Tran                                                                                                                             | sit Parameters                                                    |                                                        |  |  |  |
| e            | Eccentricity                                            | $0.0099^{+0.010}_{-0.0069}$                      | —                         |                                                                                                                                          |                                                                   | 0.07001+0.00060                                        |  |  |  |
| $\omega_*$   | Argument of periastron (degrees)                        | $61_{-70}^{+71}$                                 |                           | $K_P/K_*$                                                                                                                                | Radius of the planet in stellar radii                             | $0.07801_{-0.00058}^{+0.052}$                          |  |  |  |
| P            | Period (days)                                           | $1.217514 \pm 0.000015$                          | $1.217513 \pm 0.000015$   | <i>a</i> / <i>R</i> *                                                                                                                    | Semi-major axis in stellar radii                                  | 3.626_0.080                                            |  |  |  |
| <i>a</i>     | Semi-major axis (AU)                                    | $0.02466 \pm 0.00016$                            | $0.02464 \pm 0.00016$     | l                                                                                                                                        |                                                                   | 87.8 <u>19</u><br>0.141+0.11                           |  |  |  |
| $M_P \dots$  | Mass (MJ)                                               | 27.23+0.50                                       | $27.24^{+0.49}_{-0.48}$   | <i>bs</i>                                                                                                                                | Transit donth                                                     | $0.141_{-0.082}$                                       |  |  |  |
| <i>RP</i>    | Radius (R <sub>I</sub> )                                | $1.110^{+0.032}_{-0.032}$                        | $1.102^{+0.030}_{-0.018}$ | TERVING                                                                                                                                  | FWHM duration (days)                                              | $0.10642 \pm 0.00089$                                  |  |  |  |
| 0P           | Density (cgs)                                           | $24.7^{+1.4}$                                    | 25.2+1.2                  | $\tau$                                                                                                                                   | Inoress/egress duration (days)                                    | 0.00870+0.00044                                        |  |  |  |
| 109.98       | Surface gravity                                         | 4.738+0.017                                      | 4.744+0.013               | $T_{14}$                                                                                                                                 | Total duration (days)                                             | 0.11519 <sup>+0.00066</sup>                            |  |  |  |
| T.,          | Equilibrium temperature (K)                             | 2422+32                                          | $2414^{+29}$              | $P_T$                                                                                                                                    | A priori non-grazing transit probability                          | 0.2558+0.0052                                          |  |  |  |
| <i>⊥eq</i>   | Safranay number                                         | 0.012+0.023                                      | 0.010+0.019               | $P_{TG}$                                                                                                                                 | A priori transit probability.                                     | 0.2991+0.0085                                          |  |  |  |
| (T)          | Sationov number $(10^9 \text{ set } -1) = -2$           | 0.912_0.028                                      | 0.919_0.024               | $T_{C,0}$                                                                                                                                | transit time for PvdKO UT 2011-12-03 (BJD <sub>TDB</sub> )        | $2455899.5550 \pm 0.0010$                              |  |  |  |
| ( <b>F</b> ) | mendent nux (10° erg s ° cm ~).                         | /.81 0.22                                        | /./1 0.20                 |                                                                                                                                          |                                                                   |                                                        |  |  |  |

# Predicting Transit Times (cont'd)

• Predictions:

Current  $T_c$  = Period\* Phase + Epoch  $T_c$ Begin transit time =  $T_c$  – Duration/2 End transit time =  $T_c$  + Duration/2

|               |               |              | KELT-1 Predicted | d Transit Times   |               |  |
|---------------|---------------|--------------|------------------|-------------------|---------------|--|
|               |               |              |                  |                   |               |  |
|               |               | Du           | ration           |                   |               |  |
|               | <u>Source</u> | <u>Days</u>  | <u>Minutes</u>   | Epoch (BJD-TDB)   | <u>Period</u> |  |
|               | NASA          | 0.11519      | 165.874          | 2455914.16280     | 1.217514      |  |
|               | ETD           | 0.10642      | 153.245          | 2455909.29280     | 1.217514      |  |
|               | KELT          | 0.11500      | 165.6            | 2456863.80977     | 1.217494      |  |
|               |               |              |                  |                   |               |  |
|               | <u>Source</u> | <u>Phase</u> | Calc             | ulated Tc         | <u>Shown</u>  |  |
|               | NASA          | 1460         | 2457691.73324    | 10/30/16 5:35     | Same          |  |
|               | ETD           | 1464         | 2457691.73329    | 10/30/16 5:35     | Same          |  |
|               | KELT          | 680          | 2457691.70569    | 10/30/16 4:56     | Same          |  |
|               |               |              |                  |                   |               |  |
| <u>Source</u> |               |              | Calculated Ing   | ress/Egress Times | <u>Shown</u>  |  |
| NASA:         | Ingress tir   | ne:          | 2457691.67565    | 10/30/16 4:12     | 10/30/16 3:37 |  |
|               | Egress tim    | ne:          | 2457691.79084    | 10/30/16 6:58     | 10/30/16 7:34 |  |
|               |               |              |                  |                   |               |  |
| ETD           | Ingress tir   | ne:          | 2457691.68008    | 10/30/16 4:19     | Same          |  |
|               | Egress time:  |              | 2457691.78650    | 10/30/16 6:52     | Same          |  |
|               |               |              |                  |                   |               |  |
| KELT          | Ingress tir   | ne:          | 2457691.64819    | 10/30/16 3:33     | Same          |  |
|               | Egress tim    | ne:          | 2457691.76319    | 10/30/16 6:19     | Same          |  |
|               |               |              |                  |                   |               |  |

# Limb Darkening



= a function of: filter used star's temperature - T<sub>eff</sub> star's metallicity - Fe/H star's surface gravity - log(g)

© Copyright Dennis M. Conti 2016

# Limb Darkening Coefficients

• Ohio State Site: http://astroutils.astronomy.ohiostate.edu/exofast/limbdark.shtml

| 🗲 🕞 🛐 http://astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml 🔎 🕈 🖏 IDL - Barycentric Julian 📴 arxiv.org | 6 🗘 🛱 |
|--------------------------------------------------------------------------------------------------------------------|-------|
| File Edit View Favorites Tools Help                                                                                |       |

#### **EXOFAST - Quadratic Limb Darkening**

This applet interpolates the <u>Claret & Bloeman (2011)</u> quadradic limb darkening tables. Selecting a planet will attempt to retrieve the Teff, [Fe/H], and log(g) from exoplanets.org. Our database is synced to theirs daily; check the bottom of this page for the most recent update.

If you use this code for your research, please cite our paper (Eastman et al, 2013).

|              | Select Planet   | ~          | Band | $\sim$ |  |  |  |  |  |
|--------------|-----------------|------------|------|--------|--|--|--|--|--|
| Teff         | [Fe/H]          | log(g)     |      |        |  |  |  |  |  |
| Teff         | [Fe/H]          | log(g)     |      |        |  |  |  |  |  |
| Submit Query | User inputs are | NOT logged |      |        |  |  |  |  |  |

Copyright © Jason Eastman (Email ) All Rights Reserved. Questions, comments, or bug reports encouraged. exoplanets.csv last updated Wed Jul 20 14:41:55 2016

# Effects of a Period Off by 1.7 Seconds!



#### Phases

- Preparation Phase
- Image Capture Phase
- Calibration Phase
- Post-Processing and Modelling Phase

### The Worksheet

|             |                                            | Exoplanet:                | Exoplanet: KELT-1b        |          |  |  |  |  |
|-------------|--------------------------------------------|---------------------------|---------------------------|----------|--|--|--|--|
|             |                                            | Observer:                 | Dennis Conti              |          |  |  |  |  |
|             |                                            |                           |                           |          |  |  |  |  |
| <u>Item</u> | Host Star/Exoplanet Information:           | (click here)              |                           |          |  |  |  |  |
| 1           | RA:                                        | 00:01:26.92               |                           |          |  |  |  |  |
| 2           | Dec:                                       | +39:23:01.7               |                           |          |  |  |  |  |
| 3           | Period (days):                             | 1.275007                  |                           |          |  |  |  |  |
| 4           | R.:                                        | 1.462                     |                           |          |  |  |  |  |
| 5           | T <sub>eff</sub> :                         | 6518                      |                           |          |  |  |  |  |
| 6           | V mag:                                     | 10.7                      |                           |          |  |  |  |  |
|             | Suggested range of comp stars:             | 10.26 to 11.45 mag        |                           |          |  |  |  |  |
| 7           | Link to Reference Paper (optional):        | https://arxiv.org/pdf/120 | 6.1635v1.pdf              |          |  |  |  |  |
|             |                                            |                           |                           |          |  |  |  |  |
| 8           | Date of Observation (UT):                  | 10/12/2016                |                           |          |  |  |  |  |
|             |                                            |                           | BJD_TDB                   |          |  |  |  |  |
|             |                                            |                           | (click here)              |          |  |  |  |  |
| 9           | Ingress:                                   |                           | 2457674.60300             |          |  |  |  |  |
| 10          | Egress:                                    |                           | 2457674.71800             |          |  |  |  |  |
|             | Predicted midpoint:                        |                           | 2457674.66050             |          |  |  |  |  |
| 11          | Model fit midpoint (T <sub>c</sub> ):      |                           | 2457674.65689             |          |  |  |  |  |
|             |                                            | Delta:                    | 5.20 r                    | ninutes  |  |  |  |  |
|             |                                            |                           |                           |          |  |  |  |  |
|             | Observing Location:                        |                           |                           |          |  |  |  |  |
| 12          | Latitude:                                  |                           | 38:55:48.51 N             |          |  |  |  |  |
| 13          | Longitude:                                 |                           | 76:29:17.78 W             |          |  |  |  |  |
| 14          | Elevation (m):                             |                           | 0                         |          |  |  |  |  |
| 15          | Aperture (mm):                             |                           | 280                       |          |  |  |  |  |
| 16          | Focal length (mm):                         |                           | 3327                      |          |  |  |  |  |
|             |                                            |                           |                           |          |  |  |  |  |
| 17          | Make/model of CCD Camera:                  |                           | SX694M                    |          |  |  |  |  |
| 18          | Gain (e-/ADU):                             |                           | 0.3                       |          |  |  |  |  |
| 19          | Readout noise (e-):                        |                           | 5                         |          |  |  |  |  |
| 20          | Dark current (e-/pixel/sec):               |                           | 0.003                     |          |  |  |  |  |
|             |                                            |                           |                           |          |  |  |  |  |
| 21          | Point of where CCD goes non-linear (ADUs): | ×                         | 45000                     |          |  |  |  |  |
|             | No. of charles (such large all)            | <u>A</u> 2750             | <u>ř</u><br>2200          |          |  |  |  |  |
| 22          | No. of pixels (unbinned):                  | 2/50                      | 2200                      |          |  |  |  |  |
| 25          | Pixel size (microns -unbinned).            | 4.54                      | 4.54                      |          |  |  |  |  |
| 24          | Binning used for this observation.         | 2                         | 2                         |          |  |  |  |  |
| 25          | Functiona time (coss):                     |                           |                           |          |  |  |  |  |
| 25          | Exposure time (secs).                      | <br>                      |                           |          |  |  |  |  |
| 20          | Limb darkening coefficients:               | (click boro)              |                           |          |  |  |  |  |
| 27          | Quadratic LD u1:                           | 0 3/86430                 | Coeff' sused:             |          |  |  |  |  |
| 27          | Quadratic LD u2:                           | 0.3460436                 | Teff=6518 Fe/H=0 008 log/ | 7)=4 229 |  |  |  |  |
| 20          | Image scale (arcsec/nixel):                | 0.3132308                 | n cc                      | 5, 4.225 |  |  |  |  |
|             | FOV (arcmin):                              | 12 00                     | 10.30                     |          |  |  |  |  |
| 20          | FWHM (arcseconds):                         | 1 00                      | 10.32                     |          |  |  |  |  |
| 25          | FWHM (nixels):                             | 2.26                      |                           |          |  |  |  |  |
|             | Initial Settings:                          | 5.50                      |                           |          |  |  |  |  |
| 30          | EW/HM nivel multiplier:                    |                           |                           |          |  |  |  |  |
| 50          | Aperture radius:                           |                           |                           |          |  |  |  |  |
| 31          | Inner annulus radius:                      |                           |                           |          |  |  |  |  |
| 51          | Outer annulus radius:                      |                           |                           |          |  |  |  |  |
|             | Final Settings:                            |                           |                           |          |  |  |  |  |
| 27          | Aporturo radius:                           | 6                         | Commonte:                 |          |  |  |  |  |
| 32          | Inner annulus radius:                      | 11                        | 1-1717                    |          |  |  |  |  |
| 34          | Outer annulus radius:                      | 17                        | 1226-1808                 |          |  |  |  |  |
| 34          | outer annulus radius.                      | 17                        | 1220 1000                 |          |  |  |  |  |
|             |                                            | # of Science Images       |                           |          |  |  |  |  |
| 35          | Original #•                                | 1972                      | Final #•                  | 1800     |  |  |  |  |
| 36          | Images not used:                           | 1210 1214-1220 1800-10    | 72                        | 1000     |  |  |  |  |
| 50          |                                            |                           | -                         |          |  |  |  |  |
|             |                                            |                           |                           |          |  |  |  |  |

### **Preparation Phase**

- Select an exoplanet target
- Collect preliminary information (use suggested Worksheet)
- Predict potential meridian flips for German equatorial mounts
- Choose appropriate exposure times: important that host and comparison stars do not reach saturation during the imaging session!
- Setup file directories: Analysis Files, Bias Files, Dark Files, Flat Files, Science Images
- Acclimate CCD camera to appropriate temperature
- Generate flat files (if twilight flats are used)
- Setup autoguiding system and make sure it is properly calibrated
- Synchronize image capture computer to USNO atomic clock (e.g., using Dimension 4 program)

### Image Capture Phase

- Begin imaging session 1 hour before predicted ingress time and end 1 hour after egress time
- Handle a meridian flip as expeditiously as possible
- After capturing Science Images, then conduct Calibration Phase

# **Calibration Phase**

- Bias files 0 second dark exposures
- Dark files same exposure time as Science Images
- Flats:
  - Methods: twilight flats, dome flats, use of electroluminescence panels (preferred)
  - Exposure time set so that average ADU count = 50% of CCD linearity
- Flat darks dark exposures at the same time as flats; however, not needed if scaling of above dark files is used
- Take an odd number so median combine can be used
- Take calibration files <u>for each observing session</u>!

# The Importance of Uniform Flats



# **Post-Processing and Modelling**

- Use AstroImageJ (freeware) to conduct this phase
- Calibrate raw images using bias, darks, flats
- Update FITS headers of calibrated files with AIRMASS and BJD<sub>TDB</sub> times
- Conduct differential photometry on calibrated files

# **Conduct Model Fit**

- Enter into AstrolmageJ:
  - Orbital period
  - Predicted ingress/egress times
  - Limb darkening coefficients
  - Optionally, mass of Host star
- Add appropriate detrend parameters
- Select and adjust placement of light curve plots
- Deselect any comparison stars whose flux is variable

#### WASP-12b on UT2016-01-06



<sup>©</sup> Copyright Dennis M. Conti 2016

#### A Disintegrating Planetesimal: WD1145 UT2016-03-30

MarioMotta (clear)-60sec



### WD-1145+017 Observations



Courtesy of Mario Motta
# Tonight's Observation: KELT-1

#### KELT-1b

- Discovery paper: Siverd, et al., 2012
   "KELT-1b: A Strongly Irradiated, Highly inflated, Short Period, 27 Jupiter-Mass Companion Transiting a Mid-F Star"
- Not yet officially designated as an "exoplanet"
- Stellar parameters:

R<sub>\*</sub>=1.462 V Magnitude = 10.7 Teff = 6518 Fe/H = 0.008 Log(g) = 4.229

#### Worksheet

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exoplanet: K             |                       |             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observer:                |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
| <u>Item</u> | Host Star/Exoplanet Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (click here)             |                       |             |
| 1           | RA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00:01:26.92              |                       |             |
| 2           | Dec:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +39:23:01.7              |                       |             |
| 3           | Period (days):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.275007                 |                       |             |
| 4           | R.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.462                    |                       |             |
| 5           | T <sub>eff</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6518                     |                       |             |
| 6           | V mag:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.7                     |                       |             |
|             | Suggested range of comp stars: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 to 11.45 mag        |                       |             |
| 7           | Link to Reference Paper (optional): ht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttps://arxiv.org/pdf/120 | )6.1635v1.pdf         |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
| 8           | Date of Observation (UT):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/30/2016               |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | BJD_TDB               |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | (click here)          |             |
| 9           | Ingress:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 2457691.64819         |             |
| 10          | Egress:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 2457691.76319         |             |
|             | Predicted midpoint:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 2457691.70569         |             |
| 11          | Model fit midpoint (T,):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delta:                   | #VALUE!               | minutes     |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
|             | Observing Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                       |             |
| 12          | Latitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | 32:36:48N             |             |
| 13          | Longitude:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 116:19:55W            |             |
| 14          | Elevation (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 1131                  |             |
| 15          | Aperture (mm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                       |             |
| 16          | Focal length (mm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
| 17          | Make/model of CCD Camera:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                       |             |
| 18          | Gain (e-/ADU):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                       |             |
| 19          | Readout noise (e-):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                       |             |
| 20          | Dark current (e-/nixel/sec):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                       |             |
|             | Dark carrence / pixel/ser/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                       |             |
| 21          | Point of where CCD goes non-linear (ADUs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                        | Y                     |             |
| 22          | No. of pixels (unbinned):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | _                     |             |
| 23          | Pixel size (microns -unbinned):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
| 24          | Binning used for this observation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
| 25          | Exposure time (secs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                       |             |
| 26          | Filter used;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                       |             |
|             | Limb darkening coefficients:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (click here)             |                       |             |
| 27          | Ouadratic LD u1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                        | oeff'.s used:         |             |
| 28          | Quadratic LD u2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                        | eff=6518.Fe/H=0.008.H | og(g)=4,229 |
|             | Image scale (arcsec/pixel):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #VALUE!                  | #VALUE!               | 6(8)        |
|             | FOV (arcmin):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #VALUE!                  | #VALUE!               |             |
| 29          | FWHM (arcseconds):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #VALUE!                  |                       |             |
|             | FWHM (pixels):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                       |             |
|             | Initial Settings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                       |             |
| 30          | FWHM pixel multiplier:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                       |             |
|             | Anerture radius:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                       |             |
| 31          | Inner annulus radius:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                       |             |
|             | Outer annulus radius:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                       |             |
|             | Final Settings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |
| 32          | Anerture radius:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                       |             |
| 33          | Inner annulus radius:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                       |             |
| 34          | Outer annulus radius;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                       |             |
|             | outer united to the second sec |                          |                       |             |
|             | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of Science Images:       |                       |             |
| 35          | Original #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of other mages.          | Final #               |             |
| 36          | Images not used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                       |             |
|             | inages not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                       |             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       |             |

© Copyright Dennis M. Conti 2016

#### AstroImageJ

- Freeware downloadable from: http://www.astro.louisville.edu/software/astroimagej/
- See "A Practical Guide to Exoplanet Observing" for a step-by-step tutorial on using it: http://astrodennis.com
- Analysis of last night's observation

#### Recap from Day 1

#### Definition of "Small Telescope"

Now redefined to be 6" in aperture or greater!



**Courtesy of Mark Trapnell** 

#### The Rossiter-McLaughlin Effect



#### "Highly Inflated" Jupiters

 See: http://www.cfa.harvard.edu/news/201241

#### What time is it?

#### Time base = reference location and time standard (clock)



Exoplanet Properties from Primary Eclipse



- Exoplanet radius:  $R_p = f_1(R_*, \Delta F)$
- Exoplanet orbit :  $a/R_* = f_2(P, \Delta F, t_T, t_F)$
- Exoplanet orbit inclination:  $i = f_3(P, \Delta F, t_T, t_F)$

(see Seager, et al. 2002)

#### Testing Master Flat

- Create a Master Flat from raw flat images
- Apply the Master Flat to one of the raw flat images
- Evaluate the resulting calibrated image for any signs of dust motes, etc.

#### Example Raw Flat Image



#### Master Flat Created by Nebulosity and Applied to Raw Flat Image



#### Master Flat Created by AIJ and Applied to Raw Flat Image



#### Dust Donut Calculator: http://www.ccdware.com/resources/dust.cfm

| PRODUCTS       DOWNLOADS       SUPPORT       RESOURCES       COMPANY       BUY         RESOURCES       Sub-Exposure Calculator       DUST DONUT CALCULATOR       CCD Camera Pixel Size in Microns: 9.08       CCD Camera Pixel Size in Microns: 9.08       Focal Ratio of Telescope: 11.9       Diameter of Dust Donut in Pixels: 63       CALCULATIONS:         Diameter of Dust Donut from CCD Detecter in Milimeters:       6.807       Distance of Dust Donut from CCD Detecter in Inches:       0.268         Caclulate       Caclulate       Caclulate       Support Signature       Support Signature       Support Signature | CCDWar                                                            | °e                                                                                                                      |           |                                  |           |         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|-----------|---------|-----|
| RESOURCES         Sub-Exposure Calculator         Auto Guider Calculator         Dust Donut Calculator         CCD Camera Pixel Size in Microns: 9.08         Focal Ratio of Telescope: 11.9         Diameter of Dust Donut in Pixels: 63         CALCULATIONS:         Distance of Dust Donut from CCD Detecter in Milimeters: 6.807         Distance of Dust Donut from CCD Detecter in Inches: 0.268         Caclulate                                                                                                                                                                                                            |                                                                   | PRODUCTS                                                                                                                | DOWNLOADS | SUPPORT                          | RESOURCES | COMPANY | BUY |
| CCD Camera Pixel Size in Microns: 9.08<br>CCD Camera Pixel Size in Microns: 9.08<br>Focal Ratio of Telescope: 11.9<br>Diameter of Dust Donut in Pixels: 63<br>CALCULATIONS:<br>Distance of Dust Donut from CCD Detecter in Milimeters: 6.807<br>Distance of Dust Donut from CCD Detecter in Inches: 0.268<br>Caclulate                                                                                                                                                                                                                                                                                                               | RESOURCES                                                         | DUST DONUT CALCULATOR                                                                                                   |           |                                  |           |         |     |
| • Dust Donut Calculator       Focal Ratio of Telescope: 11.9         Diameter of Dust Donut in Pixels: 63       CALCULATIONS:         Distance of Dust Donut from CCD Detecter in Milimeters: 6.807       Distance of Dust Donut from CCD Detecter in Inches: 0.268         Caclulate       Caclulate                                                                                                                                                                                                                                                                                                                                | Auto Guider Calculator     CCD Camera Pixel Size in Microns: 9.08 |                                                                                                                         |           |                                  |           |         |     |
| Diameter of Dust Donut in Pixels: 63<br>CALCULATIONS:<br>Distance of Dust Donut from CCD Detecter in Milimeters: 6.807<br>Distance of Dust Donut from CCD Detecter in Inches: 0.268<br>Caclulate                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dust Donut Calculator                                             | Focal Ratio of Telescope: 11.9                                                                                          |           |                                  |           |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | Diameter of Dust Donut in P<br>CALCULATIONS:<br>Distance of Dust Donut from<br>Distance of Dust Donut from<br>Caclulate | ixels: 63 | ilimeters: 6.807<br>aches: 0.268 | ,         |         |     |

#### Dust Donut Calculator: http://www.ccdware.com/resources/dust.cfm

| CCDWar                                             | ·e                                                        |                            |                   |           |         |     |  |
|----------------------------------------------------|-----------------------------------------------------------|----------------------------|-------------------|-----------|---------|-----|--|
|                                                    | PRO                                                       | OUCTS DOWNLOADS            | SUPPORT           | RESOURCES | COMPANY | BUY |  |
| RESOURCES                                          | DUST DONUT CALC                                           | ULATOR                     |                   |           |         |     |  |
| Sub-Exposure Calculator     Auto Guider Calculator | CCD Camera Pixel S                                        | ize in Microns: 9.08       |                   |           |         |     |  |
| Dust Donut Calculator                              | Focal Ratio of Telescope: 11.9                            |                            |                   |           |         |     |  |
|                                                    | Diameter of Dust Donut in Pixels: 18                      |                            |                   |           |         |     |  |
|                                                    | CALCULATIONS:<br>Distance of Dust Do                      | nut from CCD Detecter in I | Wilimeters: 1.945 | i         |         |     |  |
|                                                    | Distance of Dust Donut from CCD Detecter in Inches: 0.077 |                            |                   |           |         |     |  |
|                                                    | Caclulate                                                 |                            |                   |           |         |     |  |
| A Co                                               |                                                           |                            |                   |           |         |     |  |
| A                                                  |                                                           |                            |                   |           |         |     |  |
|                                                    |                                                           |                            |                   |           |         |     |  |
|                                                    |                                                           |                            |                   |           |         |     |  |
|                                                    |                                                           |                            |                   |           |         |     |  |
|                                                    |                                                           |                            |                   |           |         |     |  |

© 2004 - 2010 CCDWare, Ltd. All Rights Reserved.

#### Conduct AIJ Analysis of KELT-1b Observation

• Follow AIJ Pipeline in Addendum

#### **Outline of Observation Paper**

#### Abstract

- 1. Introduction include: what's unique about this target and summarize discovery paper
- 2. Observation
  - 2.1 Instrumentation describe observatory and instrumentation
  - 2.2 Observing Conditions
    - 2.2.1 Possible Systematics
    - 2.2.2 Weather Conditions
  - 2.3 Workflow
    - 2.3.1 Calibration: describe methods for generating bias, darks, flats
    - 2.3.2 Comparison star selection
    - 2.3.3 Selection of priors:
      - Period
      - Star radius
      - Limb-darkening coefficients
    - 2.3.4 Normalization region used
- 3. Observation Results
  - 3.1 Pixel-to-Pixel movement
  - 3.2 Model optimization process
  - 3.3 Model results: Rp/R\*, a/R\*, Tc, RMS
- 4. Comparison to Published Data
- 5. Summary
- 6. References

## Opportunities for Contributions To Exoplanet Research

- Confirm new exoplanets the KELT program
- Refine information about known exoplanets the Hubble collaboration
- Help determine Transit Timing Variations the ETD project
- Conduct private surveys

#### The Future

#### Until now, we are mostly looking in our immediate neighborhood!



**Courtesy NASA/JPL-Caltech** 



## L2 Lagrange Point – The Future Home of JWST and WFIRST



# **TESS** Survey



#### Starshade Technology



Courtesy: NASA

# Will Amateur Astronomers be able to <u>directly</u> detect exoplanets?



# Challenges

- <u>Seeing</u> limitations: atmospheric turbulence makes it difficult to differentiate both sources
  - (typical amateur astronomer seeing: 2-3 arcseconds)



<u>Diffraction</u> limitations:

the wave nature of light produces an Airy disc pattern for both point sources

- (Rayleigh criterion for a 14" aperture:
0.46 arcseconds)



By Spencer Bliven - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=31456019

 <u>Differential magnitude</u> limitations: the extreme differences in magnitude between both objects makes it difficult to collect photons for the reflected light from the planet

#### **Possible Solutions**

 Seeing limitations: speckle interferometry

 Diffraction limitations: shaped aperture masks



• Differential magnitude limitations: infrared cameras charge injection devices



Courtesy Daniel Batcheldor 100

#### Summary

- Amateur astronomers are able to conduct exoplanet transit observations with amazing accuracy
- Their contribution to exoplanet research continues to be of value to professional astronomers
- The need for such observations in the near future will continue to grow
- Amateur astronomers' contribution to exoplanet research beyond just the transit method is promising

#### **Other Resources**

- 1. A Practical Guide to Exoplanet Observing, Dennis M. Conti, http://astrodennis.com
- AstroImageJ, Karen Collins, http://www.astro.louisville.edu/software/astroimagej/
- 3. Exoplanet Observing for Amateurs, Second Edition (Plus), Bruce L. Gary
- 4. The Exoplanet Handbook, Michael Perryman
- 5. The Handbook of Astronomical Image Processing, Richard Berry and James Burnell (comes with AIP4WIN photometry software)
- 6. The AAVSO Guide to CCD Photometry, Version 1.1, 2014
- 7. The AAVSO CCD Observing Manual, 2011

#### Addendum

#### Important AstroImageJ Terms

- T1: refers to target star
- Ci: refers to comparison star
- Source-Sky\_xx: ADU counts in the aperture for star xx <u>after</u> the sky background is taken out (e.g., Source-Sky\_C2)
- tot\_C\_cnts: the sum of the Source-Sky counts for all the comparison stars
- rel\_flux\_T1: the relative flux of target star T1
   = Source-Sky\_T1/tot\_C\_cnts
- rel\_flux\_Ci: the relative flux of comp star Ci
   = Source-Sky\_Ci/total cnts of all <u>other</u> C stars

#### **AIJ Pipeline**



## AIJ Pipeline (cont'd)



- Determine FWHM and initial Aperture/ Annulus radii using Alt-Left Click on target star
- Align images if necessary using Align Stack tool
- Eliminate "bad images"
- Select appropriate comp stars



## AIJ Pipeline (cont'd)

Multi-Aperture Photometry

- Aperture settings:
  - ✓ Aperture/Annulus radii
  - ✓ CCD gain, readout noise, dark current
  - ✓ Saturation and linearity warning levels
- Place apertures
- When photometry completed, save Measurements table



# AIJ Pipeline (cont'd)

Multi-plot Main Screen

- Select BJD\_TDB timebase in Default X-data
- Fill-in Title and Subtitle
- Fill-in Left and Right values for Fit and Normalize Regions (i.e., predicted ingress/egress times); copy them to
   V. Marker 1 and V. Marker 2
- Select Auto X Range and click on arrow
- If a meridian flip occurred during transit, click on Show and enter Flip Time


## AIJ Pipeline (cont'd)

Data Set 2 Fit Screen

- Enter predicted period
- Enter target star radius (R\*)
- Enter predicted inclination (don't lock it)
- Enter limb darkening coefficients (u1 and u2) and lock them



## AIJ Pipeline (cont'd)

Multi-Plot Y Data Screen

- Plot AIRMASS vs. tot\_C\_cnts: will show changes in sky transparency
- Plot Source-Sky counts for target and comp stars: will show those with too much scatter
- Plot rel\_flux of comp stars: will show those that might be variable; deselect those that are variable using the Multi-plot Reference Star Settings screen
- Plot rel\_flux of target and its transit fit



## AIJ Pipeline (cont'd)

Data Set 2 Fit Screen

- If a meridian flip occurred during transit, select Meridian Flip as a detrend parameter
- Set detrend parameters (at most 3) that result in a reduction in BIC by more than 5 (start with AIRMASS)
- Sequentially deselect comp stars until a minimum RMS is obtained
- See "A Practical Guide to Exoplanet Observing" for further optimization guidelines and how to create a dataset for input to external programs