

The Role of Amateur Astronomers in Exoplanet Research

Dennis M. Conti Chair, AAVSO Exoplanet Section

Overview

- Contributions To-Date
- Technical Capabilities and Techniques Used
- HST Collaboration
- Lessons Learned
- Direct Exoplanet Detection and Imaging
- What the Future Holds

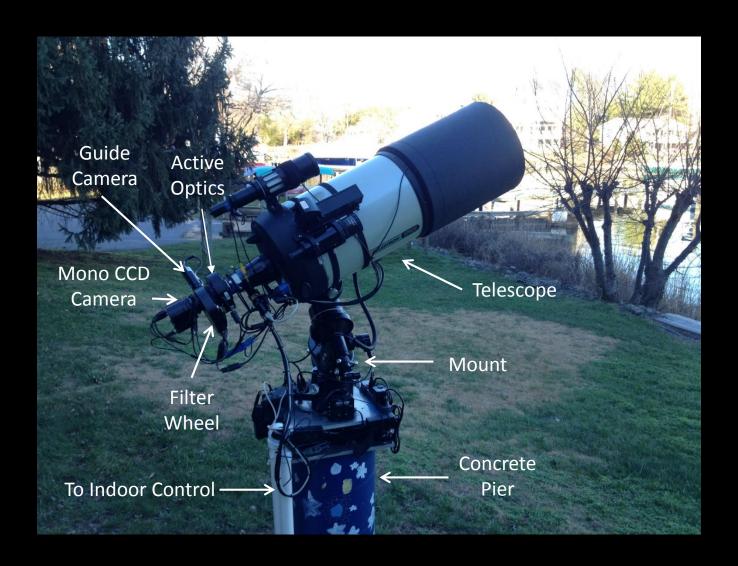
Background

- Amateur astronomers primarily use the transit method
- Some successful attempts at RV measurements (to 50m/sec) and microlensing observations
- Direct imaging currently not possible due to seeing and diffraction limiting factors
- Observations also include other "exo-objects" –
 e.g., disintegrating planetesimals (WD-1145)

Contributions To-Date

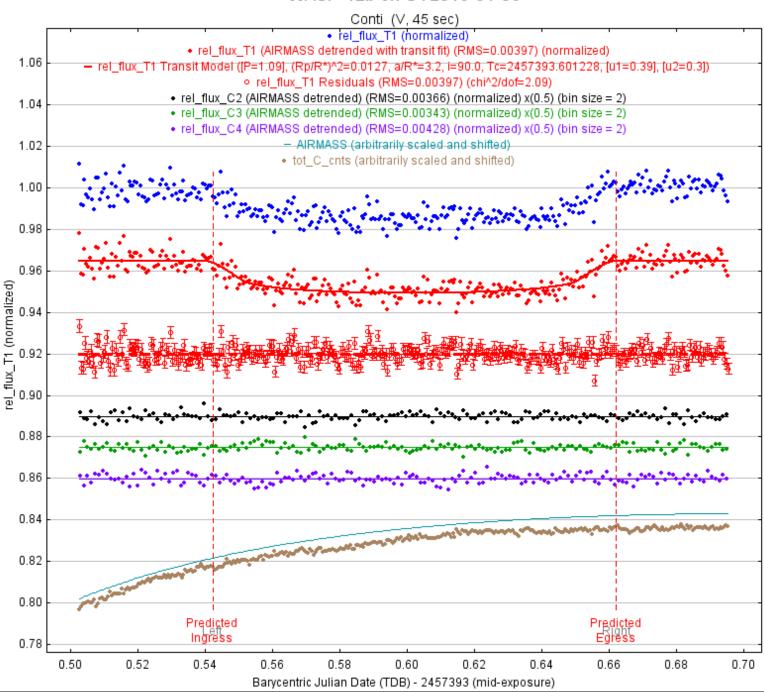
- Confirm new exoplanets the KELT program
- Refine the ephemeris of known exoplanets an HST collaboration
- Help extend the baseline of tertiary eclipse models by conducting Eclipse Timing Variations (ETVs)
- Conduct private surveys

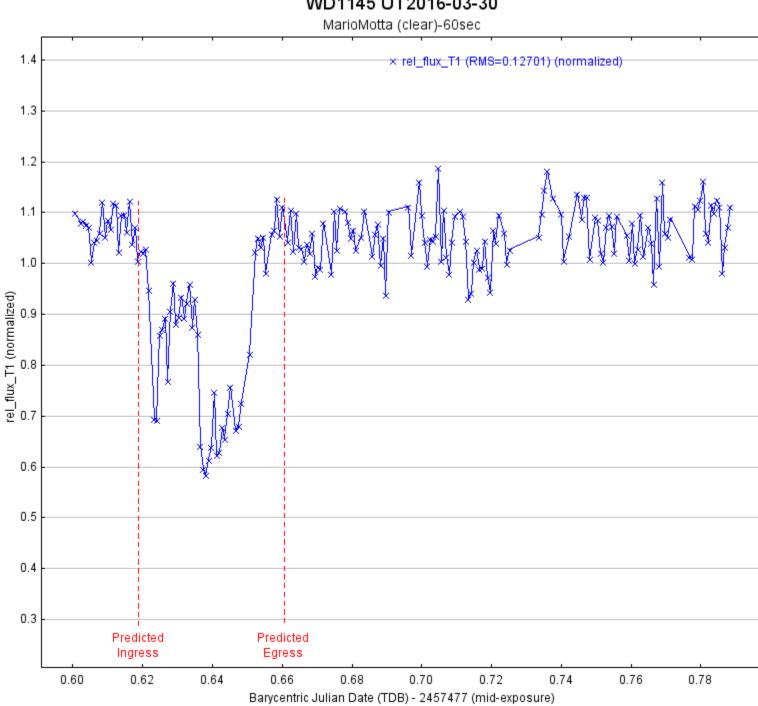
Capabilities


Observations

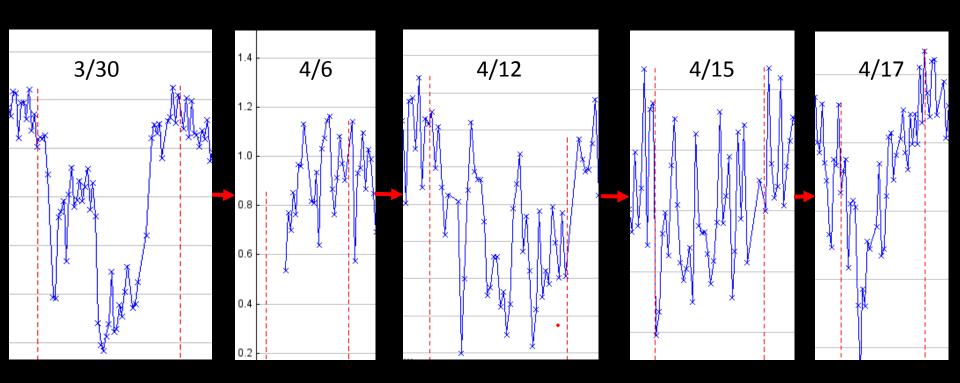
- Transit depths detectable to 2 mmag (>10 mmag more typical)
- Alternating use of filters to distinguish eclipsing binaries from exoplanets
- Simultaneous observations can better refine ephemeris
- Same equipment used for deep sky imaging can easily be adapted to exoplanet observing

World-Wide Network of Observers


Typical Setup Location: Suburban Annapolis, MD


Techniques

- High precision, differential photometry employed
- Demands uniform flat-fielding, precise guiding, and accurate timing
- All-in-one software (AstroImageJ) can be used for calibration, differential photometry and transit modeling


WASP-12b on UT2016-01-06

WD1145 UT2016-03-30

WD-1145+017 Observations

Courtesy of Mario Motta

HST Collaboration

Purpose of HST program #14260:

"Using the water molecule as a probe, we will investigate the degree to which planetary envelopes are enriched in heavy elements as a function of planetary mass, and how that enrichment might be affected by mass loss.

We will define the degree to which clouds occur in exoplanetary atmospheres, over a wide range in temperature, surface gravity, and stellar irradiation."

- Drake Deming is PI, along with several coinvestigator's
- 15 exoplanets being observed, some multiple times
- HST's WFC3/IR camera used

Status

- HST has completed 20 of 23 visits
- Role of amateur astronomers is to help refine ephemeris
- Over 60 high-quality, ground-based observations have been made to-date
- A "Practical Guide to Exoplanet Observing" developed
 - provides best practices and a tutorial on AstroImageJ

Pipeline

- An updated, prioritized list of targets is regularly posted
- Observers post light curves and initial modeling results
- Promising observations are re-reduced in a standard way, using the original images, and a transit model fit is performed; BJD_{TDB} time base used
- If the re-reduction looks good, results are scheduled for inclusion in a global fit
- A global fit, with best detrend parameters, is conducted for both circular and eccentric orbits

Sample Global Fit Output

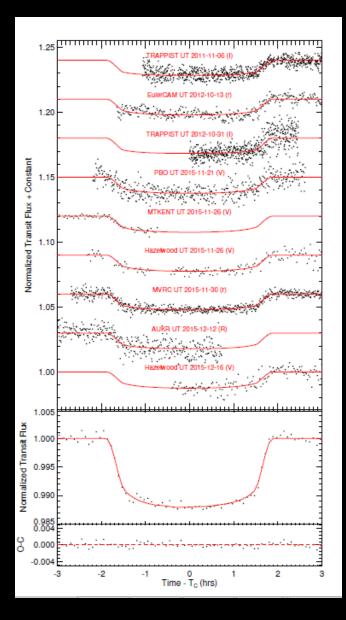
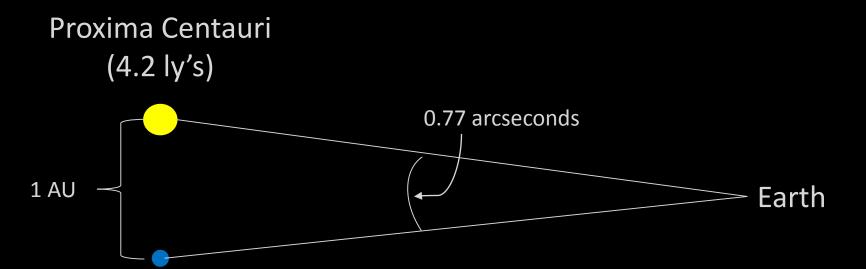


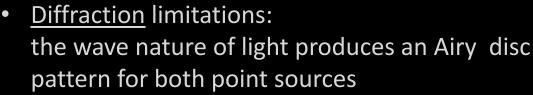
TABLE 3

Median values and 68% confidence interval for the physical and orbital parameters of the WASP-76b system


Parameter	Units	Adopted Value(Torres circular)	Value(Torres eccentric)
Stellar Parameters		•	
M _*	Mass (M _☉)	$1.370^{+0.072}_{-0.069}$	$1.369^{+0.070}_{-0.069}$
R_{\star}	Radius (R_{\odot})	$1.693^{+0.032}_{-0.031}$	1.682+0.039
L_{\star}	Luminosity (L_{\odot})	$4.10^{+0.34}_{-0.32}$	4.03+0.35
ρ	_	0.3993+0.0071	$0.406^{+0.018}_{-0.016}$
log g		$4.1177^{+0.0092}_{-0.0098}$	$4.123_{-0.013}^{+0.014}$
T _{eff}		6315+94	6313+93
[Fe/H]	_	$0.202^{+0.096}_{-0.095}$	$0.206^{+0.096}_{-0.097}$
Planet Parameters		-0.095	-0.097
ε	Eccentricity	_	$0.0124^{+0.013}_{-0.0086}$
ω	Argument of periastron (degrees)	_	-51^{+83}_{-87}
P		$1.80988211 \pm 0.00000069$	$1.80988245 \pm 0.00000068$
a	_	$0.03228^{+0.00056}_{-0.00055}$	$0.03227^{+0.00054}_{-0.00055}$
$M_P \dots$	Mass (M _J)	0.873+0.038	0.893 ± 0.034
R_P	Radius (R ₁)	$1.669^{+0.034}_{-0.033}$	$1.656^{+0.040}_{-0.041}$
ρp	Density (cgs)	$0.2333^{+0.0094}_{-0.0097}$	0.244+0.015
log gp	Surface gravity	2.890 ± 0.013	$2.906_{-0.016}^{+0.017}$
T _{eq}		2205^{+33}_{-32}	2197 ± 35
Θ	Safronov number	0.0040040.00076	$0.02539^{+0.00084}_{-0.00078}$
⟨F⟩	Incident flux (109 erg s ⁻¹ cm ⁻²)	0.02463 ⁺ 0.00075 5.36 ⁺ 0.33 5.36 ⁺ 0.31	$0.02539^{+0.00084}_{-0.00078}$ $5.29^{+0.35}_{-0.33}$
RV Parameters		-0.31	
T_C	Time of inferior conjunction (BJD _{TDB})	$2457059.85251 \pm 0.00026$	2457059.85240+0.00027
Tp	Time of periastron (BJD _{TDB})	_	2457060.95 ^{+0.41} _{-0.35}
K		118.0 ± 2.8	120.7 ± 2.1
$M_P \sin i \dots$	Minimum mass (M _J)	$0.872^{+0.038}_{-0.036}$	$0.892^{+0.035}_{-0.034}$
M_P/M_*	Mass ratio	0.000608 ± 0.000018	$0.000623^{+0.000016}_{-0.000015}$
и	RM tinear timb darkening	$0.6081^{+0.0096}_{-0.0088}$	$0.6085^{+0.0097}_{-0.0088}$
YCORALIE	m/s	-1074 ± 29	-1081 ± 13
1	m/s	-1047 ± 38	-1057 ± 17
	RV slope (m/s/day)	0.021 ± 0.032	0.013 ± 0.014
€ 008 ω _±		_	$0.0038^{+0.010}_{-0.0065}$
			-0.0029 ^{+0.0086} -0.0029 ^{+0.0086}
Linear Ephemeris			
from Follow-up			
Transits:	Desired (descr)	1 9009901 ± 0 0000000	
	Period (days)		_
40			
(cont'd)			

Key Lessons Learned

- Need way to scale initial qualification and follow-up reduction to support large scale future surveys (e.g., TESS, JWST)
- Need better training tools to push quality closer to original observers
- Need a database to store and later retrieve light curve data

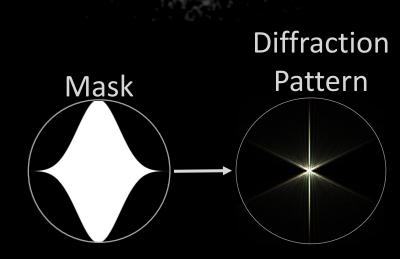

Direct Detection and Imaging: Challenges and Potential Solutions

Will Amateur Astronomers be able to <u>directly</u> detect exoplanets?

Challenges

- <u>Seeing</u> limitations: atmospheric turbulence makes it difficult to differentiate both sources
 - (typical amateur astronomer seeing:2-3 arcseconds)

- (Rayleigh criterion for a 14" aperture: 0.46 arcseconds)


By Spencer Bliven - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=31456019

 <u>Differential magnitude</u> limitations: the extreme differences in magnitude between both objects makes it difficult to collect photons for the reflected light from the planet


Possible Solutions

Seeing limitations:
 speckle interferometry

Diffraction limitations:
 shaped aperture masks

 Differential magnitude limitations: charge injection devices

The Future

- The need for follow-up observations will continue to grow with upcoming space-based surveys (TESS, JWST)
- Contribute to TTV timings of hot Jupiters with close-in companions (see Becker, et al., 2015)
- The AAVSO is developing a repository for amateur astronomer exoplanet observations
- Amateur astronomers continue to explore techniques for direct exoplanet imaging/detection
- Observatories at educational institutions offer another source of exoplanet observations: just need training and coordination

Summary

 A network of amateur astronomers is available to the professional community for conducting transit observations

Benefits:

- the global network maximizes temporal and sky coverage
- different campaigns can be quickly supported
- simultaneous observations of a given target can be scheduled –
 mitigates weather issues and allows for comparative observations with different filters
- observing time is economical (free!)
- Amateur astronomers are available to test new direct imaging and detection techniques

Links

- www.astrodennis.com
 - "A Practical Guide to Exoplanet Observing"
- www.aavso.org/exoplanet-section