

Exoplanet False Positive Detection with Sub-meter Telescopes

Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program

© Copyright Dennis M. Conti 2018

Topics

- What are typical false positives
- Why do they occur
- How do we detect them
- How you can participate in TESS

The Transit Method

Eureka - a Planet! ...or is it a false positive???

A False Positive

- Occurs when a dip in the blended light of multiple stars mimics the light curve of an exoplanet transit
- The culprit is often an eclipsing binary or variable star near the target star

TESS All-Sky Survey

Each region gets 27 days of coverage

The Challenge

- All-sky surveys such as TESS use large pixels and photometric apertures
 - the light from multiple stars may thus be blended together
- Thus, periodic dips in light can be caused by either a true exoplanet transit or various types of false positives
- Ground-based, follow-up observations are needed to make this distinction

A Typical Ground-Based Image

Pixel Sizes

Pixel Sizes

Typical TESS Photometric Aperture

Typical TESS Photometric Aperture

How Do We Detect False Positives?

False Positive Scenarios and Detection Factors

The target star has a near-by eclipsing binary (NEB)*

V-shape curve of a near-by star has odd-even depth changes

The NEB and target can't be spatially distinguished*

Hierarchical triple: the target star and NEB are orbiting each other

Depth varies in different bandpasses

* Note: could be chance alignments

False Positive Scenarios and Detection Factors (cont'd)

Target star is an eclipsing binary (EB) with blending from a neighbor

A V-shaped curve (if spatially resolvable from neighbor)

Secondary star in an EB is small enough to mimic a planet transit

Depth and radius of target may imply a non-planetary transit

Secondary star in an EB "grazes" the primary star

Example: Detection of a NEB

Observation 1

© Copyright Dennis M. Conti 2018

Observation 2 (11 eclipses later)

© Copyright Dennis M. Conti 2018

Phase Folded Observations

© Copyright Dennis M. Conti 2018

Participation in the TESS Mission

- TESS Seeing Limited Subgroup (SG1) is part of the initial exoplanet confirmation pipeline
- SG1 participants:
 - Help identify false positives
 - Help refine the ephemerides of candidate exoplanets
- Participation requires approval of SG1 Chair (Karen Collins)
 - Approval is generally granted for those completing AAVSO's qualification program

AAVSO Qualification Program

- Facilitates participation of AAVSO members in SG1
- Steps:
 - Submission of a high quality exoplanet observation
 - Certification that four key documents have been read
 - Successful analysis of a TESS test dataset
 - Qualified participants recommended for admission to SG1
- Participants are given access to the TESS Transit Finder (TTF)
- TESS observations submitted per "SG1 Submission Guidelines" and uploaded to ExoFOP-TESS

TESS Transit Finder

Local evening date	Name 🍦	V mag [‡]	Start— Mid ≑ —End	Duration \$	BJD _{TDB} start- mid- end	Elev. at start, ‡ mid, end	Az. at start, ≑ mid, end	HA at start, ‡ mid, end	RA & Dec (J2000)	Period (days) ≑	Depth (ppt) ≑	Priority 🖨	R _{planet} (R⊕)	Comments 🛊	
Thu. 06-14-2018 Nautical twilight 21:45 - 04:27 (America/New_York)	TIC 414663958 Add to TOC Finding charts: Annotated, SkyMap; Info: ExoFOP TESS page, Simbad, 2MASS, VSX; Airmass plot, ACP plan	10.71 Moon 3% @150°	00:22 01:24 02:26 ± 0:07	2:04	8284.682 8284.725 8284.768	54°, 58°, 56°	148°, 175°, 203°	-1.2, -0.2, +0.9	18:02:03.00 +06:57:38.0	1.76	14.9	4		Not observed yet.	
Thu. 06-14-2018 Nautical twilight 21:45 - 04:27 (America/New_York)	TIC 182183753 Add to TOC Finding charts: Annotated, SkyMap; Info: ExoFOP TESS page, Simbad, 2MASS, VSX; Airmass plot, ACP plan	11.50 Moon 3% @158°	23:43	4:12	8284.655 8284.743 8284.830	34°, 51°, 50°	120°, 157°, 208°	-3.1, -0.9, +1.2	19:13:35.00 +01:58:40.0	1.17	5.9	4		Not observed yet.	
Thu. 06-14-2018 Nautical twilight 21:45 - 04:27 (America/New_York)	TIC 31822871 Add to TOC Finding charts: Annotated, SkyMap; Info: ExoFOP TESS page, Simbad, 2MASS, VSX; Airmass plot, ACP plan	11.78 Moon 3% @166°	23:43	4:14	8284.655 8284.744 8284.832	31°, 44°, 40°	131°, 168°, 211°	-2.7, -0.6, +1.6	18:51:44.00 -06:09:42.0	2.43	11.2	4		Not observed yet.	~

Other Resources

- Documentation: "A Practical Guide to Exoplanet Observing" (http://astrodennis.com)
- AAVSO Exoplanet Observing Course an online, four week course:
 - exoplanet observing best practices
 - use of AstroImageJ for image calibration, differential photometry, and exoplanet transit modeling
 - next course offering begins October 1

Summary

- Ground-based observations with small telescopes are critical in helping to confirm exoplanet candidates
- Opportunities for co-authorship of scientific papers provide an additional benefit
- Training opportunities, software and documentation are available for interested participants
- The TESS mission provides an opportunity to participate in the next frontier of exoplanet discovery!

Contact Information

Email: dennis@astrodennis.com

Website: http://astrodennis.com

Addenda

The TESS Mission

- Targets: near-by, bright stars
- Key science objective:
 - "Measure the masses of 50 small (less than 4 Earth radii) transiting planets"
 - mass coupled with radius measurements from photometry, can give us average density
 - density will help us identify rocky planets
- TESS has been called a "finder scope" for JWST (James Webb Space Telescope)
- Amateur participation will be an important part of the TESS pipeline

TESS Orientation

TESS Operation

- Data downloads occur when TESS is near Earth in its orbit, in order to reduce download times
- Two 13.7 day orbits per sector
 so each sector is viewed for at least 27 days
- Ecliptic poles are viewed for 300 days due to overlapping sectors
- Northern ecliptic imaging to begin mid-2019 (a portion of Southern ecliptic in mid-2018)
- Targets:
 - Overall stars: 470 million
 - Pre-selected stars: approx. 200,000

TESS Camera (1 of 4)

Each camera has a 4" aperture and f/1.4 lens ->image scale of 21"/pixel

TESS Images

Overall TESS Pipeline

Best Practices

- Image for at least 30 minutes pre-ingress and post-egress
- Use autoguiding to achieve minimal image shift over a 4-6 hour observation window
 - Preferably, guide on the science image
- Use a precise timing source
- Use BJD_{TDB} as timebase
- Handle meridian flips efficiently
- Maximize SNR of target without reaching non-linearity or saturation

Starshade Technology

Courtesy: NASA