

The Fundamentals of Exoplanet Observing

Dennis M. Conti dennis@astrodennis.com www.astrodennis.com

Chair, AAVSO Exoplanet Section

The AAVSO

(American Association of Variable Star Observers)

- Founded in 1911:
 - > traditional focus: observing and archiving data on variable stars
 - users: professional astronomers and research scientists
 - foster and support pro/am collaborations
- In 2015, established an Exoplanet Section
- Section's purpose: help observers conduct research-grade, exoplanet observations

The Sky is a Very Active Place!!

Some Interesting Facts

- There are as many planets as there are stars
- Planets are diverse in mass, density, and composition
- Some planets are tidally locked to their parent star
- 1 out of 6 planets might have a massive exomoon
- More than 50% of stars have one or more companion stars
- Planets in multi-star systems are quite common
- Some binary stars eclipsing each other can look like a planet transiting a host star

The Strange World of Exoplanets

 Most exoplanets we have discovered are close-in, large planets: "Hot Jupiters"

• Some stars have multiple planets

Some planets orbit a star in a multiple star system

Some "planets" are free-floating

Some planets' orbits are opposite from their star's rotation

 Some planetesimals are disintegrating around their host star

The Challenge

The Transit Method: The Dominant Method Used by Amateur Astronomers

We can learn a lot from the light curve!

Capturing Data for the Light Curve

- Images of a star field containing the parent star are taken over a 4-6 hour period
- For each image, the brightness (flux) of the target star and several comparison stars are measured
- The relative change in flux between the target star and all the comparison stars is computed
- Why not just measure the brightness of the parent star?
 - Light pollution, a passing cloud, atmospheric turbulence, etc. could cause an artificial change in the star's flux
 - However, these should affect all other comparison stars in the same way
 - Any relative change should then be due to something particular to the target star

Aperture Photometry

Differential Photometry

Getting a Measure of a Star's Flux

Relative flux of Target =

Target's Source Counts - Sky Background

Sum of Comp Stars' Source Counts - Sky Background

The Importance of Uniform Flats and Guiding!

Goal:

Minimize image movement over the entire (4-6 hour) session

- Amount of movement (field rotation) is a function of:
 - polar alignment error
 - overall integration time
 - distance from guide star to target
 - focal length
 - declination of target
- Minimize periodic error
- Have a well-balanced mount
- Autoguiding is essential!

Autoguiding

- Approaches:
 - Use a guide scope
 - Off-axis guiding
 - On-axis guider
- Minimize the distance from guide star to target and comp stars

Traditional Off-Axis Guiding

On-Axis Guiding Techniques

- Use science image as source of guide star useful when guide corrections times can be = or > science image exposure times
- Use an on-axis guider (ONAG)

On-Axis Guiding

Innovations Foresight, LLC © Copyright Dennis M. Conti 2017

Simultaneous, Multi-band Measurements

- Useful in detecting false positives (example, an eclipsing binary vs. a true exoplanet transit)
- Traditional approach: use a single camera with alternating filters
 - Disadvantages: reduces cadence in each band, potential introduction of systematics
- A new approach: repurpose the ONAG to allow for <u>simultaneous</u> measurements in near-infrared (NIR) and in one or more visible bands
 - Advantages: maximizes cadence in each band, reduces systematics
 - Supports autoguiding as well!

Reference Locations

What time is it?

Time base = reference location and time standard (clock)

Local time at San Diego, CA: 13:00 on October 29, 2016

• UTC time at Greenwich, England: 20:00 on October 29, 2016

JD_{UTC} (above in Julian Date form): 2457691.33333

+6.4 min.

 HJD_{UTC} (Heliocentric Julian Date, UTC) for target at (00h 01m 26.92s, 39°23'01.7")

2457691.33780

+1.1 min.

BJD_{TDB} (Barycentric Julian Date, 2457691.33858

Barycentric Dynamical Time) for

and 32:36:48N, 116:19:55W, 1131m alt.

Upcoming TESS Pro/Am Opportunity

TESS: Transiting Exoplanet Survey Satellite

- All-sky survey of near-by, bright stars
- Science objective: measure masses of 50 planets
 whose size is less than 4 Earth radii

 Think of TESS as a "finder scope" for the James Webb Space Telescope (JWST):

TESS: Transiting Exoplanet Survey Satellite

Amateur Astronomer Participation in TESS

 Ground-based observations will be part of the pipeline to help identify false positives

Aids to Help Amateur Astronomers Achieve Higher Precision Exoplanet Observations

- "A Practical Guide to Exoplanet Observing" (www.astrodennis.com)
 - > 1,916 unique visiting users from 68 countries
- Training: AAVSO online course on Exoplanet Observing
 - 80 participants to-date
- Tools available:
 - Sample Images
 - Observation worksheet with hot links
 - AstrolmageJ for exoplanet processing
- Improved techniques developed for:
 - higher precision autoguiding
 - > simultaneous, multi-band measurement

Exoplanet Observing Using AstrolmageJ

Sample Target: WASP-12b

Part of a hierarchical triple system:

KECK AO image, Courtesy: Bechter, et al., 2015

WASP-12b Description

- Planet radius = 1.9 Jupiter radii
- Orbital axis/radius of Parent star = 3.08
- Inclination = 83 degrees

Addendum

Using ONAG for Dual-band Measurements

Dual Bandwidth Measurements During an Exoplanet Transit

Dual Bandwidth Measurements During an Eclipsing Binary Transit

Observation with a CMOS Camera

Precision Comparison: Off-Axis vs. On-Axis Guiding

Conditions:

– target: HIP 94083

– location: +76.8° declination, 41° altitude

exposures: 548 at 5 seconds for 1 hour

– polar alignment: excellent

Results:

	Off-Axis	<u>On-Axis</u>
Date	6/10/17	6/8/17
Seeing	2.6"	3.1"
Tracking error (in RA)	0.41"	0.46"

— Max. deviation:

at center of FOV	6.3 pixels	1.8 pixels
at edge of FOV	8.1 pixels	3.2 pixels

Under <u>worse</u> seeing conditions, On-Axis Guiding provided a 71% improvement over traditional Off-Axis Guiding!